• Photonics Research
  • Vol. 12, Issue 10, 2242 (2024)
H. Shao1, Y.-B. Tang2,8,*, H.-L. Yue1,3, F.-F. Wu4..., Z.-X. Ma1,3, Y. Huang1,5, L.-Y. Tang1, H. Guan1,5,6,9,* and K.-L. Gao1,5,7,10,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
  • 2Physics Teaching and Experiment Center, Shenzhen Technology University, Shenzhen 518118, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4College of Sciences, China Jiliang University, Hangzhou 310018, China
  • 5Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
  • 6Wuhan Institute of Quantum Technology, Wuhan 430206, China
  • 7Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
  • 8e-mail: tangyongbo@sztu.edu.cn
  • 9e-mail: guanhua@apm.ac.cn
  • 10e-mail: klgao@apm.ac.cn
  • show less
    DOI: 10.1364/PRJ.530283 Cite this Article Set citation alerts
    H. Shao, Y.-B. Tang, H.-L. Yue, F.-F. Wu, Z.-X. Ma, Y. Huang, L.-Y. Tang, H. Guan, K.-L. Gao, "Precision determination of dipole transition elements with a single ion," Photonics Res. 12, 2242 (2024) Copy Citation Text show less
    References

    [1] M. Roberts, P. Taylor, G. P. Barwood. Observation of the 2S1/22F7/2 electric octupole transition in a single 171Yb+ ion. Phys. Rev. A, 62, 020501(2000).

    [2] N. Huntemann, C. Sanner, B. Lipphardt. Single-ion atomic clock with 3 × 10−18 systematic uncertainty. Phys. Rev. Lett., 116, 063001(2016).

    [3] C. Tamm, N. Huntemann, B. Lipphardt. Cs-based optical frequency measurement using cross-linked optical and microwave oscillators. Phys. Rev. A, 89, 023820(2014).

    [4] V. A. Dzuba, V. V. Flambaum. Calculation of nuclear-spin-dependent parity nonconservation in s–d transitions of Ba+, Yb+, and Ra+ ions. Phys. Rev. A, 83, 052513(2011).

    [5] B. K. Sahoo, B. P. Das. Parity nonconservation in ytterbium ion. Phys. Rev. A, 84, 010502(2011).

    [6] S. G. Porsev, M. S. Safronova, M. G. Kozlov. Correlation effects in Yb+ and implications for parity violation. Phys. Rev. A, 86, 022504(2012).

    [7] M. Filzinger, S. Dörscher, R. Lange. Improved limits on the coupling of ultralight Bosonic dark matter to photons from optical atomic clock comparisons. Phys. Rev. Lett., 130, 253001(2023).

    [8] I. Counts, J. Hur, D. P. L. Aude Craik. Evidence for nonlinear isotope shift in Yb+ search for new Boson. Phys. Rev. Lett., 125, 123002(2020).

    [9] J. Hur, D. P. L. Aude Craik, I. Counts. Evidence of two-source king plot nonlinearity in spectroscopic search for new Boson. Phys. Rev. Lett., 128, 163201(2022).

    [10] V. A. Dzuba, V. V. Flambaum. Relativistic corrections to transition frequencies of Ag I, Dy I, Ho I, Yb II, Yb III, Au I, and Hg II and search for variation of the fine-structure constant. Phys. Rev. A, 77, 012515(2008).

    [11] N. Huntemann, B. Lipphardt, C. Tamm. Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks. Phys. Rev. Lett., 113, 210802(2014).

    [12] R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants. Phys. Rev. Lett., 113, 210801(2014).

    [13] R. Lange, N. Huntemann, J. M. Rahm. Improved limits for violations of local position invariance from atomic clock comparisons. Phys. Rev. Lett., 126, 011102(2021).

    [14] V. A. Dzuba, V. V. Flambaum, M. S. Safronova. Strongly enhanced effects of Lorentz symmetry violation in entangled Yb+ ions. Nat. Phys., 12, 465-468(2016).

    [15] C. Sanner, N. Huntemann, R. Lange. Optical clock comparison for Lorentz symmetry testing. Nature, 567, 204-208(2019).

    [16] L. S. Dreissen, C.-H. Yeh, H. A. Fürst. Improved bounds on Lorentz violation from composite pulse Ramsey spectroscopy in a trapped ion. Nat. Commun., 13, 7314(2022).

    [17] S. Debnath, N. M. Linke, C. Figgatt. Demonstration of a small programmable quantum computer with atomic qubits. Nature, 536, 63-66(2016).

    [18] K. Wright, K. M. Beck, S. Debnath. Benchmarking an 11-qubit quantum computer. Nat. Commun., 10, 5464(2019).

    [19] C. Monroe, W. C. Campbell, L. M. Duan. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys., 93, 025001(2021).

    [20] J. Zhang, G. Pagano, P. W. Hess. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature, 551, 601-604(2017).

    [21] M. L. Cai, Z. D. Liu, W. D. Zhao. Observation of a quantum phase transition in the quantum Rabi model with a single trapped ion. Nat. Commun., 12, 1126(2021).

    [22] I. Baumgart, J.-M. Cai, A. Retzker. Ultrasensitive magnetometer using a single atom. Phys. Rev. Lett., 116, 240801(2016).

    [23] A. Roy, S. De, B. Arora. Accurate determination of black-body radiation shift, magic and tune-out wavelengths for the 6S1/25D3/2 clock transition in Yb+. J. Phys. B, 50, 205201(2017).

    [24] S. Olmschenk, K. C. Younge, D. L. Moehring. Manipulation and detection of a trapped Yb+ hyperfine qubit. Phys. Rev. A, 76, 052314(2007).

    [25] U. I. Safronova, M. S. Safronova. Third-order relativistic many-body calculations of energies, transition rates, hyperfine constants, and blackbody radiation shift in 171Yb+. Phys. Rev. A, 79, 022512(2009).

    [26] C. D. Herold, V. D. Vaidya, X. Li. Precision measurement of transition matrix elements via light shift cancellation. Phys. Rev. Lett., 109, 243003(2012).

    [27] S. L. Woods, M. E. Hanni, S. R. Lundeen. Dipole transition strengths in Ba+ from Rydberg fine-structure measurements in Ba and Ba+. Phys. Rev. A, 82, 012506(2010).

    [28] M. Hettrich, T. Ruster, H. Kaufmann. Measurement of dipole matrix elements with a single trapped ion. Phys. Rev. Lett., 115, 143003(2015).

    [29] H. Shao, Y. Huang, H. Guan. Precise determination of the quadrupole transition matrix element of 40Ca+ via branching-fraction and lifetime measurements. Phys. Rev. A, 95, 053415(2017).

    [30] T. R. Tan, C. L. Edmunds, A. R. Milne. Precision characterization of the 2D5/2 state and the quadratic Zeeman coefficient in 171Yb+. Phys. Rev. A, 104, L010802(2021).

    [31] M. Ramm, T. Pruttivarasin, M. Kokish. Precision measurement method for branching fractions of excited P1/2 states applied to 40Ca+. Phys. Rev. Lett., 111, 023004(2013).

    [32] H. Shao, M. Wang, M. Zeng. Laser ablation and two-step photo-ionization for the generation of 40Ca+. J. Phys. Commun., 2, 095019(2018).

    [33] S. Ejtemaee, R. Thomas, P. C. Haljan. Optimization of Yb+ fluorescence and hyperfine-qubit detection. Phys. Rev. A, 82, 063419(2010).

    [34] S. M. Brewer, J.-S. Chen, A. M. Hankin. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18. Phys. Rev. Lett., 123, 033201(2019).

    [35] S. Olmschenk, D. Hayes, D. N. Matsukevich. Measurement of the lifetime of the 6p2Po1/2 level of Yb+. Phys. Rev. A, 80, 022502(2009).

    [36] W. R. Johnson, Z. W. Liu, J. Sapirstein. Transition rates for lithium-like ions, sodium-like ions, and neutral alkali-metal atoms. At. Data Nucl. Data Tables, 64, 279-300(1996).

    [37] M. S. Safronova, C. J. Williams, C. W. Clark. Relativistic many-body calculations of electric-dipole matrix elements, lifetimes, and polarizabilities in rubidium. Phys. Rev. A, 69, 022509(2004).

    [38] M. Głódź, A. Huzandrov, M. S. Safronova. Experimental and theoretical study of the nf-level lifetimes of potassium. Phys. Rev. A, 77, 022503(2008).

    [39] H. Shao, Y. Huang, H. Guan. Precision measurement of the 3d2D3/2 –state lifetime in a single trapped 40Ca+. Phys. Rev. A, 94, 042507(2016).

    [40] H. Shao, H. Yue, Z. Ma. Precision determination of the 5d2D3/2 state lifetime of single 174Yb+ ion. Phys. Rev. Res., 5, 023193(2023).

    [41] A. Kreuter, C. Becher, G. P. T. Lancaster. Experimental and theoretical study of the 3d2D–level lifetimes of 40Ca+. Phys. Rev. A, 71, 032504(2005).

    [42] https://www.nist.gov/pml/atomic-spectra-database. https://www.nist.gov/pml/atomic-spectra-database

    [43] J. Migdalek. Influence of core polarisation on relativistic oscillator strengths for lowest s-p transitions in Yb II-Hf IV spectra. J. Phys. B, 13, L169(1980).

    [44] B. C. Fawcett, M. Wilson. Computed oscillator strengths, Landé g values, and lifetimes in YB II. At. Data Nucl. Data Tables, 47, 241-317(1991).

    [45] N. Yu, L. Maleki. Lifetime measurements of the 4f145d metastable states in single ytterbium ions. Phys. Rev. A, 61, 022507(2000).

    [46] C. J. Fairhall, B. M. Roberts, J. S. M. Ginges. QED radiative corrections to electric dipole amplitudes in heavy atoms. Phys. Rev. A, 107, 022813(2023).

    [47] J.-P. Likforman, V. Tugayé, S. Guibal. Precision measurement of the branching fractions of the 5p2P1/2 state in 88Sr+ with a single ion in a microfabricated surface trap. Phys. Rev. A, 93, 052507(2016).

    [48] K. J. Arnold, S. R. Chanu, R. Kaewuam. Measurements of the branching ratios for 6P1/2 decays in 138Ba+. Phys. Rev. A, 100, 032503(2019).

    [49] M. Fan, C. A. Holliman, S. G. Porsev. Measurement of the 7p2P3/2 state branching fractions in Ra+. Phys. Rev. A, 100, 062504(2019).

    [50] W. Zhuang, T. G. Zhang, J. B. Chen. An active ion optical clock. Chin. Phys. Lett., 31, 093201(2014).

    H. Shao, Y.-B. Tang, H.-L. Yue, F.-F. Wu, Z.-X. Ma, Y. Huang, L.-Y. Tang, H. Guan, K.-L. Gao, "Precision determination of dipole transition elements with a single ion," Photonics Res. 12, 2242 (2024)
    Download Citation