• Infrared Technology
  • Vol. 43, Issue 2, 97 (2021)
Linwei SONG*, Jincheng KONG, Dongsheng LI, Xiongjun LI, Jun WU, Qiang QIN, Lihua LI, and Peng ZHAO
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    SONG Linwei, KONG Jincheng, LI Dongsheng, LI Xiongjun, WU Jun, QIN Qiang, LI Lihua, ZHAO Peng. Au-Doped HgCdTe Infrared Material and Device Technology[J]. Infrared Technology, 2021, 43(2): 97 Copy Citation Text show less
    References

    [1] Capper P. Properties of Narrow Gap Cadmium-based Compounds[M]. London: INSPEC, the institution of electrical engineers, 1994.

    [3] Shih H D, Kinch M A, Aqariden F. et al. Development of gold-doped Hg0.79Cd0.21Te for very-long-wavelength infrared detectors[J]. Applied Physics Letters, 2003, 82(23): 4157-4159.

    [4] Finkman E, Nemirovsky Y. Electrical properties of shallow levels in p-type HgCdTe[J]. J. Appl. Phys., 1986, 59(4): 1205-1211

    [5] Selamet Y, Singh R, ZHAO J, et al. Gold diffusion in mercury cadmium telluride grown molecular beam epitaxy [C]//Proc. of SPIE, 2003, 5209: 67-74.

    [7] Granrand O, Mollard L, LargeronC, et al. Study of LWIR and VLWIR focal plane array developments: comparison between p-on-n and different n-on-p technologies on LPE HgCdTe[J]. Journal of Electronic Materials, 2009, 38(8): 1733-1740.

    [8] Shih H D, Kinch M A, Aqariden F, et al. Development of high -operating-temperature infrared detectors with gold-doped Hg0.70Cd0.30Te[J]. Applied Physics Letters,2004, 84(8): 1263-1266.

    [9] Lutz H, Breiter R, Figgemeier H, et al. Improved high operating temperature MCT MWIR modules[C]//Proc. Of SPIE, 2014, 9070: 90701D.

    [10] Triboulet R, Duy T N, Durand A. T H M. a breakthrough in Hg1-xCdxTe bulk metallurgy[J]. Journal of Vacuum Science & Technology A, 1985, 3(1): 95-99.

    [11] Kalisher M H. The behavior of doped Hg1-xCdxTe epitaxy layers grown from Hg-rich melts[J]. Journal of Crystal Growth, 1984, 70: 365-372.

    [12] Mynbaev K D, Ivanov-Omskii V I. Doping of epitaxial layers and heterostructures based on HgCdTe[J]. Semiconductors, 2006, 40(1): 1-21.

    [13] Ciani A J, Ogut S, Batra I P. Concentrations of native and gold defects in HgCdTe from first principles calculations[J]. Journal of Electronic Materials, 2004, 33(6): 737-741.

    [14] Antoszewski J, Musca C A, Dell J M, et al. Characterization of Hg0.3Cd0.7Te n-on p-type structures obtained by reactive ion etching induced p to n conversion[J]. Journal of Electronic Materials, 2000, 29(6): 837-840.

    [15] SUN Q Z, YANGJ R, WEI Y F, et al. Characteristics of Au migration and concentration distributions in Au-doped HgCdTe LPE materials[J]. Journal of Electronic Materials, 2015, 44(8) : 2773-2778.

    [16] CHU M, Terterian S, WANG C C, et al. Au-doped HgCdTe for infrared detectors and focal plane arrays[C]//Proc. of SPIE, 2001, 4454: 116-122.

    [17] CHEN M C, Colombo L, Dodge J A, et al. The minority carrier lifetime in doped and undoped p-type Hg0.78Cd0.22Te liquid phase epitaxy films [J]. Journal of Electronic Materials, 1995, 24(5): 539-544.

    [18] Nguyen T, Musca C A, Dell J M, et al. HgCdTe long-wavelength infrared photovoltaic detectors fabricated using plasma-induced junction formation technology[J]. Journal of Electronic Materials, 2003, 32(7): 615-621.

    [19] SouzaA I D, Stapelbroek M G, Bryan E R, et al. HgCdTe HDVIP detectors and FPAs for strategic applications[C]//Proc. Of SPIE, 2003, 5074: 146-156.

    [20] Breiter R, Figgemeier H, Luta H, et al. Improved MCT LWIR modules for demanding imaging applications[J]. Proc. of SPIE, 2015, 9451: 945128.

    [22] Reibel Y, Rouvie A, Nedelcu A, et al. Large format, small pixel pitch and hot detectors at Sofradir[C]//Proc. of SPIE, 2013, 8896: 88960B.

    SONG Linwei, KONG Jincheng, LI Dongsheng, LI Xiongjun, WU Jun, QIN Qiang, LI Lihua, ZHAO Peng. Au-Doped HgCdTe Infrared Material and Device Technology[J]. Infrared Technology, 2021, 43(2): 97
    Download Citation