• Chinese Journal of Lasers
  • Vol. 50, Issue 23, 2301009 (2023)
Hailin Hu1, Yihang Yu2, Dijun Chen2, Guangwei Sun2..., Kangwen Yang1, Fang Wei2,* and Fei Yang2,**|Show fewer author(s)
Author Affiliations
  • 1School of Optical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai , 200093, China
  • 2Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/CJL230701 Cite this Article Set citation alerts
    Hailin Hu, Yihang Yu, Dijun Chen, Guangwei Sun, Kangwen Yang, Fang Wei, Fei Yang. Measurement Technology of Laser Relative Intensity Noise at Low Frequency for Space-Based Gravitational Wave Detection[J]. Chinese Journal of Lasers, 2023, 50(23): 2301009 Copy Citation Text show less
    References

    [1] Taylor J H, Weisberg J M. Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+16[J]. The Astrophysical Journal Letters, 345, 434(1989).

    [2] Abbott B P, Abbott R, Abbott T D et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 116, 061102(2016).

    [3] Armano M, Audley H, Auger G et al. Charge-induced force noise on free-falling test masses: results from LISA pathfinder[J]. Physical Review Letters, 118, 171101(2017).

    [4] Luo Z R, Zhang M, Jin G et al. Introduction of Chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration, 7, 3-10(2020).

    [5] Luo J, Ai L H, Ai Y L et al. A brief introduction to the TianQin project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 60, 1-19(2021).

    [6] Danzmann K, diger AR. LISA technology: concept, status, prospects[J]. Classical and Quantum Gravity, 20, S1-S9(2003).

    [7] Wang Z, Sha W, Chen Z et al. Preliminary design and analysis of telescope for space gravitational wave detection[J]. Chinese Optics, 11, 131-151(2018).

    [8] Tröbs M, Barke S, Möbius J et al. Lasers for LISA: overview and phase characteristics[C], 154, 012016(2009).

    [9] Gong X, Xu S, Bai S et al. A scientific case study of an advanced LISA mission[J]. Classical and Quantum Gravity, 28, 094012(2011).

    [10] Numata K, Camp J, Krainak M A et al. Performance of planar-waveguide external cavity laser for precision measurements[J]. Optics Express, 18, 22781-22788(2010).

    [11] Liu H S, Gao R H, Luo Z R et al. Laser ranging and data communication for space gravitational wave detection[J]. Chinese Optics, 12, 486-492(2019).

    [12] Numata K, Alalusi M, Stolpner L et al. Characteristics of the single-longitudinal-mode planar-waveguide external cavity diode laser at 1064 nm[J]. Optics Letters, 39, 2101-2104(2014).

    [13] Fang R. Study on measurement of relative intensity noise of laser[D], 2-10(2018).

    [14] Tröbs M, D'Arcio L, Heinzel G et al. Frequency stabilization and actuator characterization of an ytterbium-doped distributed-feedback fiber laser for LISA[J]. Journal of the Optical Society of America B, 26, 1137-1140(2009).

    [15] Abadie J, Abbott B P, Abbott R et al. A gravitational wave observatory operating beyond the quantum shot-noise limit[J]. Nature Physics, 7, 962-965(2011).

    [16] Bing H, Shi S D, Yang L et al. Cascaded random Raman fiber laser with low RIN and wide wavelength tunability[J]. Advanced Photonics, 12, 36-44(2022).

    [17] Duan H Z, Luo Y X, Zhang J Y et al. Inter-satellite laser interferometry[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 60, 162-177(2021).

    [18] Zhang J, Wei S S, Liu H W et al. Measurement technique for broadband frequency and intensity noise of single-frequency laser[J]. Chinese Journal of Lasers, 48, 0301002(2021).

    [19] Li F, Wang J W, Gao Z C et al. Laser intensity noise evaluation system for space gravitational wave detection[J]. Acta Physica Sinica, 71, 209501(2022).

    [20] Yu Y H, Hu H L, Chen D J et al. Research intensity noise of a single-frequency laser with ultralow background[J]. Chinese Journal of Lasers, 50, 2201003(2023).

    [24] Hashemi S E. Elative intensity noise (RIN) in high-speed VCSELs for short reach communication[D], 9-12(2012).

    [25] Welch P. A fixed-point fast Fourier transform error analysis[J]. IEEE Transactions on Audio and Electroacoustics, 17, 151-157(1969).

    [26] Urick V J, Devgan P S, McKinney J D et al. Laser noise and its impact on the performance of intensity-modulation with direct-detection analog photonic links[R](2007).

    [27] Zhou M, Xiao H, Song Q G et al. Review of ultra-narrow linewidth low-noise fiber laser technology[J]. Laser & Optoelectronics Progress, 60, 1500002(2023).

    [28] Yang F. Research on single-frequency fiber laser and fiber time-frequency transfer technology[D], 42-43(2013).

    [29] Rønnekleiv E. Frequency and intensity noise of single frequency fiber Bragg grating lasers[J]. Optical Fiber Technology, 7, 206-235(2001).

    [30] Foster S, Cranch G A, Tikhomirov A. Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers[J]. Physical Review A, 79, 053802(2009).

    [31] Foster S. Fundamental limits on 1/f frequency noise in rare-earth-metal-doped fiber lasers due to spontaneous emission[J]. Physical Review A, 78, 013820(2008).

    [32] Pan Z Q, Zhou J, Yang F et al. Low-frequency noise suppression of a fiber laser based on a round-trip EDFA power stabilizer[J]. Laser Physics, 23, 035105(2013).

    Hailin Hu, Yihang Yu, Dijun Chen, Guangwei Sun, Kangwen Yang, Fang Wei, Fei Yang. Measurement Technology of Laser Relative Intensity Noise at Low Frequency for Space-Based Gravitational Wave Detection[J]. Chinese Journal of Lasers, 2023, 50(23): 2301009
    Download Citation