[1] LI Y, GECEVICIUS M, QIU J R. Long persistent phosphors: From fundamentals to applications[J]. Chem Soc Rev, 2016, 45(8): 2090-2136.
[2] LASTUSAARI M, LAAMANEN T, MALKAM?KI M, et al. The Bologna Stone: History’s first persistent luminescent material[J]. Ejm, 2012, 24(5): 885-890.
[3] XU J, TANABE S. Persistent luminescence instead of phosphorescence: History, mechanism, and perspective[J]. J Lumin, 2019, 205: 581-620.
[4] HOOGENSTRAATEN W, KLASENS H A. Some properties of zinc sulfide activated with copper and cobalt[J]. J Electrochem Soc, 1953, 100(8): 366.
[5] WANG Yuhua, FENG Peng, DING Songsong, et al. Mater Rep, 2023, 37(3): 5-17.
[6] YAMAMOTO H, MATSUZAWA T. Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+[J]. J Lumin, 1997, 72/74: 287-289.
[7] H?LS? J, JUNGNER H, LASTUSAARI M, et al. Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+[J]. J Alloys Compd, 2001, 323/324: 326-330.
[8] MATSUZAWA T, AOKI Y, TAKEUCHI N, et al. A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+[J]. J Electrochem Soc, 1996, 143(8): 2670-2673.
[9] XIAO Z G, XIAO Z Q. Long afterglow silicate luminescent material and its manufacturing method: US 6093346[P]. 2000-07-25.
[10] LIN Y H, TANG Z L, ZHANG Z T, et al. Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor[J]. J Mater Sci Lett, 2001, 20(16): 1505-1506.
[11] ZHAO Yongwang, WANG Jingfu, BAI Zhitao, et al. Chin Rare Earths, 2015, 36(6): 57-61.
[12] ZHAO Yongwang, ZHANG Chao, ZHAO Wenguang, et al. Chin Rare Earths, 2017, 38(2): 87-92.
[13] BESSIèRE A, SHARMA S K, BASAVARAJU N, et al. Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate[J]. Chem Mater, 2014, 26(3): 1365-1373.
[14] VIANA B, SHARMA S K, GOURIER D, et al. Long term in vivo imaging with Cr3+ doped spinel nanoparticles exhibiting persistent luminescence[J]. J Lumin, 2016, 170: 879-887.
[15] ZHOU X F, GENG W Y, GUO H J, et al. K4CaGe3O9:Mn2+, Yb3+: A novel orange-emitting long persistent luminescent phosphor with a special nanostructure[J]. J Mater Chem C, 2018, 6(27): 7353-7360.
[16] YE Q F, WANG Y H, GUO H J, et al. Designing a novel red to near-infrared persistent phosphor CaMgGe2O6:Mn2+, Sm3+ based on a vacuum referred binding energy diagram[J]. Dalton Trans, 2019, 48(29): 11052-11062.
[17] LECOINTRE A, BESSIèRE A, BOS A J J, et al. Designing a red persistent luminescence phosphor: The example of YPO4:Pr3+, Ln3+ (Ln=Nd, Er, Ho, Dy)[J]. J Phys Chem C, 2011, 115(10): 4217-4227.
[18] GUO H J, CHEN W B, ZENG W, et al. Structure and luminescence properties of a novel yellow super long-lasting phosphate phosphor Ca6BaP4O17:Eu2+, Ho3+[J]. J Mater Chem C, 2015, 3(22): 5844-5850.
[19] LEI B F, LI B, ZHANG H R, et al. Synthesis and luminescence properties of cube-structured CaSnO3/RE3+ (RE=Pr, Tb) long-lasting phosphors[J]. J Electrochem Soc, 2007, 154(7): H623.
[20] ZHAO H W, SHI M M, ZOU J, et al. Synthesis and luminescent properties of a new cyan afterglow phosphor CaSnO3:Gd3+[J]. Ceram Int, 2017, 43(2): 2750-2755.
[21] MURAZAKI Y, ARAI K, ICHINOMIYA K. New red long persistence phosphor[J]. Journal Illuminating Engineering Institute Japan, 1999, 83(7): 445-446.
[22] SHI Z D, ZHANG L, MA Y L, et al. Kinetics and mechanism of the sulfurization behavior of silver conductive material in automobile industry[J]. Rare Met, 2022, 41(1): 37-44.
[23] ZHANG X Y, ZHANG L, ZHOU T Y, et al. High specific surface area inherited from sea-urchin-like AACH clusters prepared by a novel spray precipitation[J]. Rare Met, 2022, 41(11): 3684-3693.
[24] H?PPE H A, LUTZ H, MORYS P, et al. Luminescence in Eu2+-doped Ba2Si5N8: Fluorescence, thermoluminescence, and upconversion[J]. J Phys Chem Solids, 2000, 61(12): 2001-2006.
[25] VAN DEN EECKHOUT K, SMET P F, POELMAN D. Persistent luminescence in rare-earth codoped Ca2Si5N8:Eu2+[J]. J Lumin, 2009, 129(10): 1140-1143.
[26] LEA?O J L Jr, FANG M H, LIU R S. Critical review—Narrow-band emission of nitride phosphors for light-emitting diodes: Perspectives and opportunities[J]. ECS J Solid State Sci Technol, 2017, 7(1): R3111-R3133.
[27] LI Yang, QIU Jianrong. Laser Optoelectron Prog, 2021, 58(15): 35-44.
[28] BESSIèRE A, JACQUART S, PRIOLKAR K, et al. ZnGa2O4:Cr3+: A new red long-lasting phosphor with high brightness[J]. Opt Express, 2011, 19(11): 10131-10137.
[29] PAN Z W, LU Y Y, LIU F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates[J]. Nat Mater, 2011, 11(1): 58-63.
[30] ZHAO Shanshan, YU Bin, LIN Yuanying, et al. Chin Sci Bull, 2019, 64(35): 3717-3729.
[31] AITASALO T, H?LS? J, JUNGNER H, et al. Mechanisms of persistent luminescence in Eu2+, RE3+ doped alkaline earth aluminates[J]. J Lumin, 2001, 94/95: 59-63.
[32] DORENBOS P. Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds[J]. J Electrochem Soc, 2005, 152(7): H107.
[33] CLABAU F, ROCQUEFELTE X, JOBIC S, et al. Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+[J]. Chem Mater, 2005, 17(15): 3904-3912.
[34] AITASALO T, H?LS? J, JUNGNER H, et al. Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+, R3+[J]. J Phys Chem B, 2006, 110(10): 4589-4598.
[35] CHANG C K, MAO D L, SHEN J F, et al. Preparation of long persistent SrO·2Al2O3 ceramics and their luminescent properties[J]. J Alloys Compd, 2003, 348(1/2): 224-230.
[36] JIA D, WANG X J, JIA W, et al. Persistent energy transfer in CaAl2O4:Tb3+, ?Ce3+[J]. J Appl Phys, 2003, 93(1): 148-152.
[37] JIA D, YEN W M. Enhanced VK3+ center afterglow in MgAl2O4 by doping with Ce3+[J]. J Lumin, 2003, 101(1/2): 115-121.
[38] UEDA J, SHINODA T, TANABE S. Photochromism and near-infrared persistent luminescence in Eu2+-Nd3+-co-doped CaAl2O4 ceramics[J]. Opt Mater Express, 2013, 3(6): 787.
[39] KATAYAMA Y, KOBAYASHI H, TANABE S. Deep-red persistent luminescence in Cr3+-doped LaAlO3 perovskite phosphor for in vivo imaging[J]. Appl Phys Express, 2015, 8(1): 012102.
[40] DU J R, DE CLERCQ O Q, POELMAN D. Thermoluminescence and near-infrared persistent luminescence in LaAlO3:Mn4+, R (R=Na+, Ca2+, Sr2+, Ba2+) ceramics[J]. Ceram Int, 2018, 44(17): 21613-21620.
[41] LI T S, LIU Q A, ZHU D Y, et al. Fabrication and characterizations of Eu2+-Dy3+ co-doped SrAl2O4 ceramics with persistent luminescence[J]. J Am Ceram Soc, 2023, 106(10): 5877-5886.
[42] JI Z G, TIAN S, CHEN W K, et al. Enhanced long lasting persistent luminescent SrAl2O4:Eu, Dy ceramics prepared by electron beam bombardment[J]. Radiat Meas, 2013, 59: 210-213.
[43] SAMPAIO D V, SOUZA N R S, SANTOS J C A, et al. Translucent and persistent luminescent SrAl2O4:Eu2+Dy3+ ceramics[J]. Ceram Int, 2016, 42(3): 4306-4312.
[44] ALVES Y G S, SAMPAIO D V, SANTOS J C A, et al. Laser sintering and optical characterization of SrAl2-xBxO4:Eu, Dy ceramics[J]. Optik, 2020, 221: 165338.
[45] SILVA D C, LIMA A S, SILVA J H L, et al. Laser sintering and influence of the Dy concentration on BaAl2O4:Eu2+, Dy3+ persistent luminescence ceramics[J]. J Eur Ceram Soc, 2021, 41(6): 3629-3634.
[46] UEDA J, AISHIMA K, NISHIURA S, et al. Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 Ceramics[J]. Appl Phys Express, 2011, 4(4): 042602.
[47] UEDA J, AISHIMA K, TANABE S. Temperature and compositional dependence of optical and optoelectronic properties in Ce3+-doped Y3Sc2Al3?xGaxO12 (x=0, 1, 2, 3)[J]. Opt Mater, 2013, 35(11): 1952-1957.
[48] DAI Z F, BOIKO V, GRZESZKIEWICZ K, et al. Effect of annealing treatment on the persistent luminescence of Y3Al2Ga3O12:Ce3+, Cr3+, Pr3+ ceramics[J]. Opt Mater, 2020, 105: 109888.
[49] BOIKO V, DAI Z F, LI J, et al. Effect of Nd concentration on persistent luminescence of Y3Al2Ga3O12:Ce3+, Cr3+, Nd3+ ceramics for the near-infrared region[J]. J Lumin, 2022, 250: 119115.
[50] G?UCHOWSKI P, TOMALA R, KUJAWA D, et al. Insights into the relationship between crystallite size, sintering pressure, temperature sensitivity, and persistent luminescence color of Gd2.97Pr0.03Ga3Al2O12 powders and ceramics[J]. J Phys Chem C, 2022, 126(16): 7127-7142.
[51] G?UCHOWSKI P. Pressure-induced changes in the persistent luminescence of Gd2.994Ce0.006Ga3Al2O12 and Gd2.964Ce0.006Dy0.03Ga3Al2O12 nanoceramics[J]. Dalton Trans, 2022, 51(14): 5524-5533.
[52] KUJAWA D, SZEWCZYK D, BOIKO V, et al. Effect of graphene addition on the thermal and persistent luminescence properties of Gd2.994Ce0.006Ga3Al2O12 and Gd2.964Ce0.006Dy0.03Ga3Al2O12 ceramics[J]. Materials, 2022, 15(7): 2606.
[53] WANG Y, HUANG J Q, LIN Y Q, et al. Photoluminescence and persistent luminescence properties of Lu3ScAl4-xGaxO12:Ce3+ ceramics[J]. J Lumin, 2023, 258: 119824.
[54] K?STLER W, WINNACKER A, ROSSNER W, et al. Effect of Pr-codoping on the X-ray induced afterglow of (Y, Gd)2O3:Eu[J]. J Phys Chem Solids, 1995, 56(7): 907-913.
[55] TROJAN-PIEGZA J, ZYCH E. Afterglow luminescence of Lu2O3:Eu ceramics synthesized at different atmospheres[J]. J Phys Chem C, 2010, 114(9): 4215-4220.
[56] CHEN S, YANG Y, ZHOU G H, et al. Characterization of afterglow-related spectroscopic effects in vacuum sintered Tb3+, Sr2+ co-doped Lu2O3 ceramics[J]. Opt Mater, 2012, 35(2): 240-243.
[57] PEDROSO C C S, CARVALHO J M, RODRIGUES L C V, et al. Rapid and energy-saving microwave-assisted solid-state synthesis of Pr3+-, Eu3+-, or Tb3+-doped Lu2O3 persistent luminescence materials[J]. ACS Appl Mater Interfaces, 2016, 8(30): 19593-19604.
[58] ZHUANG Y X, UEDA J, TANABE S. Photochromism and white long-lasting persistent luminescence in Bi3+-doped ZnGa2O4 ceramics[J]. Opt Mater Express, 2012, 2(10): 1378.
[59] LUCHECHKO A, ZHYDACHEVSKYY Y, MARABA D, et al. TL and OSL properties of Mn2+-doped MgGa2O4 phosphor[J]. Opt Mater, 2018, 78: 502-507.
[60] ZHANG Y, HUANG R, LIN Z X, et al. Co-dopant influence on near-infrared luminescence properties of Zn2SnO4:Cr3+, Eu3+ ceramic discs[J]. J Alloys Compd, 2016, 686: 407-412.
[61] DUAN X X, YUAN M, OU K, et al. Synthesis process dependent white LPL in Zn2GeO4 ceramic and the long afterglow mechanism[J]. Mater Today Commun, 2020, 24: 100915.
[62] JEDO? J, ZELER J, ZYCH E. The effect of dose on thermoluminescence of ScPO4:Eu3+ ceramic[J]. Opt Mater, 2020, 107: 110090.
[63] LI Y B, MA C Y, YE W G, et al. Translucent red-emitting AlN:Mn phosphor ceramics with high luminescence thermal stability[J]. J Lumin, 2022, 244: 118688.
[64] YANG C C, ZHANG X Y, KANG J, et al. Recent progress on garnet phosphor ceramics for high power solid-state lighting[J]. J Mater Sci Technol, 2023, 166: 1-20.
[65] HOLLOWAY W W, KESTIGIAN M. Optical properties of cerium-activated garnet crystals[J]. J Opt Soc Am, 1969, 59(1): 60-63.
[66] UEDA J, KUROISHI K, TANABE S. Yellow persistent luminescence in Ce3+-Cr3+-codoped gadolinium aluminum gallium garnet transparent ceramics after blue-light excitation[J]. Appl Phys Express, 2014, 7(6): 062201.
[67] UEDA J, KUROISHI K, TANABE S. Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light[J]. Appl Phys Lett, 2014, 104(10): 101904.
[68] XU J, UEDA J, KUROISHI K, et al. Fabrication of Ce3+-Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence[J]. Scr Mater, 2015, 102: 47-50.
[69] UEDA J, MIYANO S, TANABE S. Formation of deep electron traps by Yb3+ codoping leads to super-long persistent luminescence in Ce3+-doped yttrium aluminum gallium garnet phosphors[J]. ACS Appl Mater Interfaces, 2018, 10(24): 20652-20660.
[70] UEDA J. Analysis of optoelectronic properties and development of new persistent phosphor in Ce3+-doped garnet ceramics[J]. J Ceram Soc Japan, 2015, 123(1444): 1059-1064.
[71] UEDA J, DORENBOS P, BOS A J J, et al. Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5?xGaxO12 host via conduction band engineering[J]. J Mater Chem C, 2015, 3(22): 5642-5651.
[72] XU J A, UEDA J, TANABE S. Design of deep-red persistent phosphors of Gd3Al5-xGaxO12:Cr3+ transparent ceramics sensitized by Eu3+ as an electron trap using conduction band engineering[J]. Opt Mater Express, 2015, 5(5): 963.
[73] DU Q P, UEDA J, ZHENG R L, et al. Photochromism and long persistent luminescence in Pr3+-doped garnet transparent ceramic via UV or blue light up-conversion charging[J]. Adv Opt Mater, 2023, 11(7): 2202612.
[74] LIU Q, WANG W L, DAI Z F, et al. Fabrication and long persistent luminescence of Ce3+-Cr3+ co-doped yttrium aluminum gallium garnet transparent ceramics[J]. J Rare Earths, 2022, 40(11): 1699-1705.
[75] MéVEL C, CARREAUD J, DELAIZIR G, et al. First ZnGa2O4 transparent ceramics[J]. J Eur Ceram Soc, 2021, 41(9): 4934-4941.
[76] DAI Z F, MAO X Y, LIU Q, et al. Effect of dopant concentration on the optical characteristics of Cr3+:ZnGa2O4 transparent ceramics exhibiting persistent luminescence[J]. Opt Mater, 2022, 125: 112127.
[77] ZHOU Chunming, CHEN Hang, CHEN Xu, et al. J Synth Cryst, 2023, 52(9): 1555-1569.
[78] ZHUANG Y X, UEDA J, TANABE S. Multi-color persistent luminescence in transparent glass ceramics containing spinel nano-crystals with Mn2+ ions[J]. Appl Phys Lett, 2014, 105(19): 191904.
[79] CHENU S, V??RON E, GENEVOIS C, et al. Long-lasting luminescent ZnGa2O4:Cr3+ transparent glass-ceramics[J]. J Mater Chem C, 2014, 2(46): 10002-10010.
[80] CASTAING V, SONTAKKE A D, FERNáNDEZ-CARRIóN A J, et al. Persistent luminescence of ZnGa2O4:Cr3+ transparent glass ceramics: Effects of excitation wavelength and excitation power[J]. Eur J Inorg Chem, 2017, 2017(44): 5114-5120.
[81] CASTAING V, GIORDANO L, RICHARD C, et al. Photochromism and persistent luminescence in Ni-doped ZnGa2O4 transparent glass-ceramics: Toward optical memory applications[J]. J Phys Chem C, 2021, 125(18): 10110-10120.
[82] CHEN D Q. Near-infrared long-lasting phosphorescence in transparent glass ceramics embedding Cr3+-doped LiGa5O8 nanocrystals[J]. J Eur Ceram Soc, 2014, 34(15): 4069-4075.
[83] LIN S S, LIN H, MA C G, et al. High-security-level multi-dimensional optical storage medium: Nanostructured glass embedded with LiGa5O8:Mn2+ with photostimulated luminescence[J]. Light Sci Appl, 2020, 9: 22.
[84] LIU T P, LIU Z Y, WU J, et al. Broadband near-infrared persistent luminescence in Ni2+-doped transparent glass-ceramic ZnGa2O4[J]. New J Chem, 2022, 46(2): 851-856.
[85] NAKANISHI T, TANABE S. Novel $\hbox{Eu}^{{2}} $-activated glass ceramics precipitated with green and red phosphors for high-power white LED[J]. IEEE J Sel Top Quantum Electron, 2009, 15(4): 1171-1176.
[86] NAKANISHI T, KATAYAMA Y, UEDA J, et al. Fabrication of Eu:SrAl2O4-based glass ceramics using Frozen sorbet method[J]. J Ceram Soc Japan, 2011, 119(1391): 609-615.
[87] AKANISHI T. Preparation of europium-activated SrAl2O4 glass composites using the frozen sorbet technique[J]. J Ceram Soc Japan, 2015, 123(1441): 862-867.
[88] HU T, LIN H, XU J, et al. Color-tunable persistent luminescence in oxyfluoride glass and glass ceramic containing Mn2+: α-Zn2SiO4 nanocrystals[J]. J Mater Chem C, 2017, 5(6): 1479-1487.
[89] ABDEL-HAMEED S A M, MARZOUK M A. Long afterglow from multi dopant transparent and opaque glass ceramic phosphor for white, red, yellow, and blue emissions: Zn2SiO4:Eu3+, Dy3+, Mn2+[J]. J Alloys Compd, 2022, 893: 162337.