• Chinese Optics Letters
  • Vol. 17, Issue 10, 100012 (2019)
Chao Fei1、2, Xiaojian Hong1、2, Ji Du1、2, Guowu Zhang1、2, Yuan Wang1、2, Xiaoman Shen1、2, Yuefeng Lu1、2, Yang Guo1、2, and Sailing He1、2、*
Author Affiliations
  • 1Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou 310058, China
  • 2Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
  • show less
    DOI: 10.3788/COL201917.100012 Cite this Article Set citation alerts
    Chao Fei, Xiaojian Hong, Ji Du, Guowu Zhang, Yuan Wang, Xiaoman Shen, Yuefeng Lu, Yang Guo, Sailing He. High-speed underwater wireless optical communications: from a perspective of advanced modulation formats [Invited][J]. Chinese Optics Letters, 2019, 17(10): 100012 Copy Citation Text show less
    Schematic diagram of the general UWOC setup in a lab experiment. AWG: arbitrary waveform generator; EA: electrical amplifier; ATT: adjustable attenuator; DC: direct current; LD: laser diode; APD: avalanche photodiode; DSA: digital serial analyzer; Tx-DSP: digital signal processing at the transmitter; Rx-DSP: digital signal processing at the receiver.
    Fig. 1. Schematic diagram of the general UWOC setup in a lab experiment. AWG: arbitrary waveform generator; EA: electrical amplifier; ATT: adjustable attenuator; DC: direct current; LD: laser diode; APD: avalanche photodiode; DSA: digital serial analyzer; Tx-DSP: digital signal processing at the transmitter; Rx-DSP: digital signal processing at the receiver.
    Received optical power (ROP) and SNR versus transmission distance under tap water. w/: with; w/o: without; NLE: nonlinear equalization[39].
    Fig. 2. Received optical power (ROP) and SNR versus transmission distance under tap water. w/: with; w/o: without; NLE: nonlinear equalization[39].
    (a) Received SNR versus the volume of added Maalox suspension after a 1 m underwater transmission. (b) Attenuation coefficient versus volume of the added Maalox suspension. (c)–(f) The snapshots of the optical beam passing through water of different turbidities which represent (c) “tap water”, (d) “clear ocean”, (e) “coastal ocean”, and (f) “harbor water”[39].
    Fig. 3. (a) Received SNR versus the volume of added Maalox suspension after a 1 m underwater transmission. (b) Attenuation coefficient versus volume of the added Maalox suspension. (c)–(f) The snapshots of the optical beam passing through water of different turbidities which represent (c) “tap water”, (d) “clear ocean”, (e) “coastal ocean”, and (f) “harbor water”[39].
    (a) Shannon capacity limit under different underwater transmission distances. (b) Entropy of different subcarriers for 25 m and 35 m underwater transmission distances. (c) Graphical illustrations for bit-power loading and the PCS-256/1024QAM-DMT scheme of three different entropies. Note that the bars denote the probability of each modulation symbol[42].
    Fig. 4. (a) Shannon capacity limit under different underwater transmission distances. (b) Entropy of different subcarriers for 25 m and 35 m underwater transmission distances. (c) Graphical illustrations for bit-power loading and the PCS-256/1024QAM-DMT scheme of three different entropies. Note that the bars denote the probability of each modulation symbol[42].
    Received constellation diagrams of (a) bit-power loading, (b) PCS-256QAM-DMT for 35 m, and (c) PCS-1024QAM-DMT for 25 m underwater transmissions[36].
    Fig. 5. Received constellation diagrams of (a) bit-power loading, (b) PCS-256QAM-DMT for 35 m, and (c) PCS-1024QAM-DMT for 25 m underwater transmissions[36].
    AuthorsTransmitter typeLight output powerPhotodetectorModulation formatsData rateDistance (m)Distance-data rate product (Gbps·m)Real time
    Xu et al.[30]Blue LEDN/APIN16-QAM-OFDM161 Mb/s20.32N
    Tian et al.[10]440 nm micro-LEDN/APIN/APDOOK800/200 Mb/s0.6/5.41.08N
    Wang et al.[33]521 nm LED160 mW2 PINs64-QAM-DMT, MRC2.175 Gb/s1.22.61N
    Zhou et al.[72]RGBYC LEDPINBit-power loading DMT15.17 Gb/s1.218.2N
    Wang et al.[59]448 nm LEDN/AAPDOOK25 Mb/s100.25Y
    Wang et al.[32]520 nm LD15 mWMPPC32-QAM-OFDM312.03 Mb/s216.55N
    Oubei et al.[35]450 nm LD15 mWAPD16-QAM-OFDM4.8 Gb/s5.425.92N
    Chen et al.[36]520 nm LD15 mWAPD32-QAM-OFDM5.5 Gb/s5/21115.5N
    Liu et al.[73]520 nm LD19.4 mWPIN/APDOOK2.7 Gb/s34.593.15N
    Fei et al.[39]450 nm LD20 mWAPDBit-power loading DMT, NE7.3 Gb/s15109.95N
    Fei et al.[41]450 nm LD12.8 mWAPDMB-DFT-S-DMT5.6 Gb/s55308N
    Fei et al.[40]450 nm LD120 mWPINBit-power loading DMT, NE16.6/6.6 Gb/s5/55462@35 mN
    Li et al.[37]Two 488 nm LDs20 mWPINPAM4, injection locking16 Gb/s10160N
    Li et al.[14]Three 680 nm LDs3 mWPINInjection locking, OOK25 Gb/s10250N
    Huang et al.[38]450 nm LD120 mWPIN/APD16-QAM-OFDM14.8/10.8 Gb/s1.7/10.225.16/110N
    Hong et al.[42]450 nm LD120 mWPINPCS-DMT18.09/12.6 Gb/s5/35441@35 mN
    Wang et al.[44]520 nm LD15 mWAPDOOK, NE500 Mb/s10050N
    Hu et al.[43]532 nm LDN/ASPD256-PPM & RS, LDPC∼MHz120N/AN
    JAMSTEC[52]450 nm LD>5WPMTN/A20 Mb/s1202.4Y
    Table 1. Summary of Recent Works in UWOC
    Chao Fei, Xiaojian Hong, Ji Du, Guowu Zhang, Yuan Wang, Xiaoman Shen, Yuefeng Lu, Yang Guo, Sailing He. High-speed underwater wireless optical communications: from a perspective of advanced modulation formats [Invited][J]. Chinese Optics Letters, 2019, 17(10): 100012
    Download Citation