[1] TRAN N H, REINHARD M, GIN K Y H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-A review[J]. Water Res, 2018, 133: 182-207.
[2] HUANG Y Q, WONG C K C, ZHENG J S, et al. Bisphenol A (BPA) in China: A review of sources, environmental levels, and potential human health impacts[J]. Environ Int, 2012, 42: 91-99.
[3] O’CONNOR J C, CHAPIN R E. Critical evaluation of observed adverse effects of endocrine active substances on reproduction and development, the immune system, and the nervous system[J]. Pure Appl Chem, 2003, 75(11/12): 2099-2123.
[4] CIMMINO I, FIORY F, PERRUOLO G, et al. Potential mechanisms of bisphenol A (BPA) contributing to human disease[J]. Int J Mol Sci, 2020, 21(16): 5761.
[5] WANG Z J, SUN P Z, LI Y X, et al. Reactive nitrogen species mediated degradation of estrogenic disrupting chemicals by biochar/monochloramine in buffered water and synthetic hydrolyzed urine[J]. Environ Sci Technol, 2019, 53(21): 12688-12696.
[6] BASILE T, PETRELLA A, PETRELLA M, et al. Review of endocrine-disrupting-compound removal technologies in water and wastewater treatment plants: An EU perspective[J]. Ind Eng Chem Res, 2011, 50(14): 8389-8401.
[7] ZHAO Z, SHEN B X, HU Z Z, et al. Recycling of spent alkaline Zn-Mn batteries directly: Combination with TiO2 to construct a novel Z-scheme photocatalytic system[J]. J Hazard Mater, 2020, 400: 123236.
[8] KUMAR A, KHAN M, FANG L P, et al. Visible-light-driven N-TiO2@SiO2@Fe3O4 magnetic nanophotocatalysts: Synthesis, characterization, and photocatalytic degradation of PPCPs[J]. J Hazard Mater, 2019, 370: 108-116.
[9] WANG J, GAO M M, HO G W. Bidentate-complex-derived TiO2/carbon dot photocatalysts: In situ synthesis, versatile heterostructures, and enhanced H2 evolution[J]. J Mater Chem A, 2014, 2(16): 5703-5709.
[10] WANG F L, WU Y L, WANG Y F, et al. Construction of novel Z-scheme nitrogen-doped carbon dots/{0?0?1}TiO2 nanosheet photocatalysts for broad-spectrum-driven diclofenac degradation: Mechanism insight, products and effects of natural water matrices[J]. Chem Eng J, 2019, 356: 857-868.
[11] ALIYEVA H, GUREL A, NOWAK S, et al. Photo-anodes based on TiO2 and carbon dots for photo-electrocatalytical measurements[J]. Mater Lett, 2019, 250: 119-122.
[12] ZHANG S, ZOU Y T, CHEN Z S, et al. Visible-light-driven activation of persulfate by RGO/g-C3N4 composites for degradation of BPA in wastewater[J]. J Inorg Mater, 2019: 101.
[13] CHEN Guihua, GE Changhua, PAN Fuyou, et al. J Synth Cryst, 2010, 39(2): 433-439.
[14] XIANG Q J, LV K L, YU J G. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air[J]. Appl Catal B Environ, 2010, 96(3/4): 557-564.
[15] YU H J, ZHAO Y F, ZHOU C, et al. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution[J]. J Mater Chem A, 2014, 2(10): 3344-3351.
[16] LIU Y Z, ZHANG H Y, KE J, et al. 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution[J]. Appl Catal B Environ, 2018, 228: 64-74.
[17] SHINDE S, MAJUMDAR P, SIL S, et al. Energy-inexpensive galvanic deposition of BiOI on electrodes and its conversion to 3D porous BiVO4-based photoanode[J]. J Phys Chem C, 2020, 124(35): 18930-18945.
[18] XIE Y B, ZHOU L M, HUANG C J, et al. Fabrication of nickel oxide-embedded titania nanotube array for redox capacitance application[J]. Electrochim Acta, 2008, 53(10): 3643-3649.
[19] CAO W, YUAN Y H, YANG C, et al. In-situ fabrication of g-C3N4/MIL-68(In)-NH2 heterojunction composites with enhanced visible-light photocatalytic activity for degradation of ibuprofen[J]. Chem Eng J, 2020, 391: 123608.
[20] LIU Cai, LIU Fang, HUANG Fang, et al. J Inorg Mater, 2021, 36(11): 1154-1162.
[21] BAHRAMI M, NEZAMZADEH-EJHIEH A. Effect of the supported ZnO on clinoptilolite nano-particles in the photodecolorization of semi-real sample bromothymol blue aqueous solution[J]. Mater Sci Semicond Process, 2015, 30: 275-284.
[22] MOHAMED M A, ZAIN M F M, MINGGU L J, et al. Enhancement of visible light photocatalytic hydrogen evolution by bio-mimetic C-doped graphitic carbon nitride[J]. Int J Hydrog Energy, 2019, 44(26): 13098-13105.
[23] HU X Y, FAN J, ZHANG K L, et al. Photocatalytic removal of organic pollutants in aqueous solution by Bi4NbxTa(1-x)O8I[J]. Chemosphere, 2012, 87(10): 1155-1160.
[24] XU Y G, LIU J, XIE M, et al. Construction of novel CNT/LaVO4 nanostructures for efficient antibiotic photodegradation[J]. Chem Eng J, 2019, 357: 487-497.
[25] SAHU R S, SHIH Y H, CHEN W L. New insights of metal free 2D graphitic carbon nitride for photocatalytic degradation of bisphenol A[J]. J Hazard Mater, 2021, 402: 123509.
[26] TANG Y, YIN X H, MU M M, et al. Anatase TiO2@MIL-101(Cr) nanocomposite for photocatalytic degradation of bisphenol A[J]. Colloids Surf A Physicochem Eng Aspects, 2020, 596: 124745.
[27] AKPAN U G, HAMEED B H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review[J]. J Hazard Mater, 2009, 170(2/3): 520-529.
[28] CHEN Huanghui, LU Shuaishuai, LIU Yanan, et al. Environ Chem, 2023, 42(6): 1992-2002.
[29] DING J F, LU S H, SHEN L L, et al. Enhanced photocatalytic reduction for the dechlorination of 2-chlorodibenzo-p-dioxin by high-performance g-C3N4/NiO heterojunction composites under ultraviolet-visible light illumination[J]. J Hazard Mater, 2020, 384: 121255.
[30] LI W J, LI D Z, LIN Y M. Evidence for the active species involved in the photodegradation process of methyl orange on TiO2[J]. J Phys Chem C Nanomater Interfaces, 2012, 116(5): 3552-3560.
[31] LUO Wei, FENG Xiaoqing, HUANG Ying, et al. China Environ Sci, 2020, 40(4): 1545-1554.
[33] WU Tong, GU Jiayu, PENG Chen, et al. China Environ Sci, 2021, 41(7): 3255-3265.