• High Power Laser and Particle Beams
  • Vol. 32, Issue 12, 121003 (2020)
Jianjun Wang, Yu Liu, Min Li, Xi Feng, Qiuhui Chu, Chun Zhang, Cong Gao, Rumao Tao*, Honghuan Lin, and Feng Jing
Author Affiliations
  • Laser Fusion Research Center, CAEP, P. O. Box 919-988, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202032.200180 Cite this Article
    Jianjun Wang, Yu Liu, Min Li, Xi Feng, Qiuhui Chu, Chun Zhang, Cong Gao, Rumao Tao, Honghuan Lin, Feng Jing. Ten-year review and prospect on mode instability research of fiber lasers[J]. High Power Laser and Particle Beams, 2020, 32(12): 121003 Copy Citation Text show less
    References

    [1] Snitzer E. Proposed fiber cavities for optical masers[J]. J Appl Phys, 32, 36-39(1961).

    [2] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. J Opt Soc Am B, 27, 63-92(2010).

    [3] Mourou G, Brocklesby B, Tajima T. The future is fibre accelerators[J]. Nat Photonics, 7, 258-261(2013).

    [4] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nat Photonics, 7, 861-867(2013).

    [5] Zervas M N, Codemard C A. High power fiber lasers: A review[J]. IEEE J Sel Top Quantum Electron, 20(11), 219-241(2014).

    [6] Shi W, Fang Q, Zhu X. Fiber lasers and their applications[J]. Appl Opt, 53, 6554-6568(2014).

    [8] Liu Z J, Jin X X, Su R T. Development status of high power fiber lasers and their coherent beam combination[J]. Science China: Information Science, 62, 041301(2019).

    [9] Stiles E. New developments in IPG fiber laser technology[C]Proc 5th Int Wkshop Fiber Lasers. 2009.

    [10] Eidam T, Hanf S, Seise E. Femtosecond fiber CPA system emitting 830 W average output power[J]. Opt Lett, 35, 94-96(2010).

    [11] Shiner B. The impact of fiber laser technology on the wld wide material processing market[C]Proc Conf Lasers ElectroOpt. 2013: AF2J.1.

    [16] Fang Q, Li J, Shi W. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes[J]. IEEE Photonics J, 9, 1506107(2017).

    [17] Möller F, Krämer R, Matzdf C, et al. MultikW perfmance analysis of Ybdoped monolithic singlemode amplifier oscillat setup[C]Proc of SPIE. 2019: 108970D.

    [18] Ye Y, Xi X, Shi C. Experimental study of 5 kW high stability monolithic fiber laser oscillator with or without external feedback[J]. IEEE Photonics J, 11, 1503508(2019).

    [19] Eidam T, Wirth C, Jauregui C. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Opt Express, 19, 13218-13224(2011).

    [20] Otto H J, Stutzki F, Jansen F. Temporal dynamics of mode-instabilities in high power fiber lasers and amplifiers[J]. Opt Express, 20, 15710-15722(2012).

    [21] Stutzki F, Otto H, Jansen F. High-speed modal decomposition of mode instabilities in high-power fiber lasers[J]. Opt Lett, 36, 4572-4574(2011).

    [22] Tao R M, Ma P F, Wang X L, et al. Study of mode instabilities in high power fiber amplifiers by detecting scattering light[C]International Photonics OptoElectronics Meetings. 2014.

    [26] Tao R, Ma P, Wang X, et al. 1.4 kW allfiber narrowlinewidth polarizationmaintained fiber amplifier[C]The 20th International Symposium on HighPower Laser Systems Applications. 2014.

    [27] Tao R, Ma P, Wang X. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength[J]. Journal of Optics, 17, 045504(2015).

    [28] Wirth C, Schmidt O, Tsybin I. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Opt Lett, 36, 3118-3120(2011).

    [29] Jansen F, Stutzki F, Otto H. High-power thermally guiding index-antiguiding-core fibers[J]. Opt Lett, 38, 510-512(2013).

    [30] Yang B L, Zhang H W, Shi C, et al. 3.05 kW monolithic fiber laser oscillat with simultaneous optimizations of stimulated Raman scattering transverse mode instability[J]. Journal of Optics, 2018, 20: 025802.

    [31] Malleville M, Benoît A, Dauliat R, et al. Experimental investigation of the transverse modal instabilities onset in high power fullyaperiodiclargepitch fiber lasers[C]Proc of SPIE. 2018: 1051206.

    [32] Scarnera V, Ghiringhelli F, Malinowski A. Modal instabilities in high power fiber laser oscillators[J]. Opt Express, 27, 4386-4403(2019).

    [33] Roohfouz A, Chenar R, Azizi S, et al. Effect of pumping configuration on the transverse mode instability power threshold in a 3.02 kW fiber laser oscillat[C]OSA Laser Congress. 2019.

    [34] Chen H, Cao J, Huang Z. Experimental investigations on TMI and IM-FWM in distributed side-pumped fiber amplifier[J]. IEEE Photonics J, 12, 1502413(2020).

    [35] Jauregui C, Eidam T, Limpert J. Impact of modal interference on the beam quality of high-power fiber amplifiers[J]. Opt Express, 19, 3258-3271(2011).

    [36] Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Opt Express, 19, 10180-10192(2011).

    [37] Hansen K R, Alkeskjold T T, Broeng J. Thermally induced mode coupling in rare-earth doped fiber amplifiers[J]. Opt Lett, 37, 2382-2384(2012).

    [38] Jauregui C, Eidam T, Otto H J. Physical origin of mode instabilities in high-power fiber laser systems[J]. Opt Express, 20, 12912-12925(2012).

    [39] Ward B, Robin C, Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers[J]. Opt Express, 20, 11407-11422(2012).

    [40] Dong L. Stimulated thermal Rayleigh scattering in optical fibers[J]. Opt Express, 21, 2642-2656(2013).

    [41] Hu I N, Zhu C, Zhang C, et al. Analytical timedependent they of thermallyinduced modal instabilities in high power fiber amplifiers[C]Proc of SPIE. 2013: 860109.

    [42] Jauregui C, Eidam T, Otto H J. Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems[J]. Opt Express, 21, 440-451(2012).

    [43] Chi M, Huignard J P, Petersen P M. A general theory of two-wave mixing in nonlinear media[J]. J Opt Soc Am B, 26, 1578-1584(2009).

    [44] Smith A V, Smith J J. Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers[J]. Opt Express, 20, 24545-24558(2012).

    [45] Smith A V, Smith J J. Spontaneous Rayleigh seed for stimulated Rayleigh scattering in high power fiber amplifiers[J]. IEEE Photonics J, 5, 7100807(2013).

    [46] Smith A V, Smith J J. Review of models of mode instability in fiber amplifiers[EBOL]. http:asphotonics.com.

    [47] Ward B. Numerical analysis of modal instability onset in fiber amplifiers[C]Proc of SPIE. 2014: 89611U.

    [48] Naderi S, Dajani I, Grosek J, et al. Theetical treatment of modal instability in high power claddingpumped Raman amplifiers[C]Proc of SPIE. 2015: 93442X.

    [49] Ward B. Finite element steady periodic beam propagation analysis of mode instability in high power fiber amplifiers[J]. Opt Express, 26, 16875-16883(2018).

    [50] Smith A V, Smith J J. Steady-periodic method for modeling mode instability in fiber amplifiers[J]. Opt Express, 21, 2606-2623(2013).

    [51] Naderi S, Dajani I, Madden T. Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations[J]. Opt Express, 21, 16111-16129(2013).

    [52] Eznaveh Z S, LopezGalmiche G, AntonioLopez E, et al. Bidirectional pump configuration f increasing thermal modal instabilities threshold in high power fiber amplifiers[C]Proc of SPIE. 2015: 93442G.

    [53] Xia N, Yoo S. Mode instability in ytterbium-doped non-circular fibers[J]. Opt Express, 25, 13230-13251(2017).

    [54] Wang Y, Liu Q, Ma Y. Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers[J]. Ann Phys, 1600398(2017).

    [55] Zhu S, Li J, Li L. Mode instabilities in Yb: YAG crystalline fiber amplifiers[J]. Opt Express, 27, 35065-35078(2019).

    [56] Hansen K R, Alkeskjold T T, Broeng J. Theoretical analysis of mode instability in high-power fiber amplifiers[J]. Opt Express, 21, 1944-1971(2013).

    [57] Hansen K R, Lægsgaard J. Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers[J]. Opt Express, 22, 11267-11278(2014).

    [58] Mermelstein M. Laser linewidth dependence to the transverse mode instability (TMI) nonlinear gain in kWclass fiber amplifiers[C]Proc of SPIE. 2018: 1051221.

    [59] Jauregui C, Otto H-J, Stutzki F. Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening[J]. Opt Express, 23, 20203-20218(2015).

    [60] Tao R, Ma P, Wang X, Zhou P. 1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities[J]. Photonics Research, 3, 86-93(2015).

    [61] Kong L, Leng J, Zhou P. Numerical modeling of the thermally induced core laser leakage in high power co-pumped ytterbium doped fiber amplifier[J]. High Power Laser Science and Engineering, 6, e25(2018).

    [62] Li Z, Huang Z, Xiang X. Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser[J]. Photonics Research, 5, 77-81(2017).

    [63] Zervas M. Transverse mode instability analysis in fibre amplifiers[C]Proc of SPIE. 2017: 100830M.

    [64] Gao W, Zhao B, Fan W. Instability transverse mode phase transition of fiber oscillator for extreme power lasers[J]. Opt Express, 27, 22393-22407(2019).

    [65] Smith A V, Smith J J. Mode instability thresholds of fiber amplifiers[C]Proc of SPIE. 2013: 860108.

    [66] Laurila M, Jørgensen M M, Hansen K R. Distributed mode filtering rod fiber amplifier delivering 292 W with improved mode stability[J]. Opt Express, 20, 5742-5753(2012).

    [67] Tao R, Ma P, Wang X. Study of wavelength dependence of mode instability based on a semi-analytical model[J]. IEEE J Quantum Electron, 51, 1600106(2015).

    [68] Filippov V, Ustimchik V, Chamovskiy Y, et al. Impact of axial profile of the gain medium on the mode instability in lasers: regular versus tapered fibers[C]Cleoeuropeeqec P Cj105 1 P Cj. 2015.

    [69] Stihler C, Otto HJ, Jauregui C, et al. Experimental investigation of transverse mode instabilities in a doublepass Ybdoped rodtype fiber amplifier[C]Proc of SPIE. 2017: 100830R.

    [70] Bobkov K, Bubnov M, Aleshkina S. Long-term mode shape degradation in large mode area Yb-doped pulsed fiber amplifers[J]. Laser Phys Lett, 14, 015102(2017).

    [71] Lupi J, Johansen M, Michieletto M. Static and dynamic mode coupling in double-pass rod-type fiber amplifier[J]. Opt Lett, 43, 5535-5538(2018).

    [72] Chen Y, Xu H, Xing Y. Impact of gamma-ray radiation-induced photodarkening on mode instability degradation of an ytterbium-doped fiber amplifier[J]. Opt Express, 26, 20430-20441(2018).

    [73] Gaida C, Gebhardt C, Heuermann T, et al. Observation of transversemode instabilities in a thuliumdoped fiber amplifier[C]Proc of SPIE. 2019: 1089702.

    [74] Distler V, Möller F, Strecker M, et al. High power narrowlinewidth Raman amplifier its limitation[C]Proc of SPIE. 2020: 1126005.

    [75] Zhang H, Xiao H, Wang X. Mode dynamics in high power Yb-Raman fiber amplifier[J]. Opt Lett, 45, 3394-3397(2020).

    [76] Lægsgaard J. Static thermo-optic instability in double-pass fiber amplifiers[J]. Opt Express, 24, 13429-13443(2016).

    [77] Ward B. Theory and modeling of photodarkening-induced quasi static degradation in fiber amplifiers[J]. Opt Express, 24, 3488-3501(2016).

    [78] Smith A V, Smith J J. Mode instability thresholds for Tm-doped fiber amplifiers pumped at 790 nm[J]. Opt. Express, 24, 975-992(2016).

    [79] Shi C, Wang X, Zhang H. Simulation investigation of impact factors in photodarkening-induced beam degradation in fiber amplifers[J]. Laser Phys, 27, 105102(2017).

    [80] Tao R, Wang X, Zhou P. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications[J]. IEEE J Sel Top Quant Electron, 24, 0903319(2018).

    [81] Tao R, Ma P, Wang X. Study of dopant concentrations on thermally induced mode instability in high-power fiber amplifiers[J]. Laser Phys, 26, 065103(2016).

    [82] Ward B. Accurate modeling of rodtype photonic crystal fiber amplifiers[C]Proc of SPIE. 2015: 97280F.

    [83] Xia N. Investigation of transverse mode instability suppression in large mode area fibre[D]. Singape: Nanyang Technological University Library. 2019.

    [84] Tao R, Wang X, Zhou P. Seed power dependence of mode instabilities in high-power fiber amplifiers[J]. Journal of Optics, 19, 065202(2017).

    [85] Karow M, Tünnermann H, Neumann J. Beam quality degradation of a single-frequency Yb-doped photonic crystal fiber amplifier with low mode instability threshold power[J]. Opt Lett, 37, 4242-4244(2012).

    [86] Chu Q, Tao R, Li Chen. Experimental study of the influence of mode excitation on mode instability in high power fiber amplifier[J]. Scientific Reports, 9, 9396(2019).

    [87] Zhang F, Xu H, Xing Y. Bending diameter dependence of mode instabilities in multimode fiber amplifier[J]. Laser Phys Lett, 16, 035104(2019).

    [88] Tao R, Ma P, Wang X, et al. A novel theetical model f mode instability in high power fiber lasers[C]Advanced Solid State Lasers. 2014: AM5A20.

    [90] Stihler C, Jauregui C, Kholaif S, et al. The sensitivity of the mode instability threshold to different types of intensity noise[C]Proc of SPIE. 2020, 11260: 1126018.

    [91] Tao R, Liu Y, Xie L, et al. Static dynamic mode evolution behavi in high power distributed sidecoupled claddingpumped fiber amplifiers[J]. submitted.

    [92] Tao R, Ma P, Wang X. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers[J]. Laser Phys Lett, 12, 085101(2015).

    [93] Yu C, Shatrovoy O, Fan T. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier[J]. Opt Lett, 41, 5202-5205(2016).

    [94] Tao R, Ma P, Wang X. Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers[J]. Journal of Optics, 18, 065501(2016).

    [95] Goodno G D, McNaught S, Thielen P, et al. Polarization control with mode stability: US8922877B1[P]. 2014XXXX.

    [96] Lei M, Qi Y, Liu C, et al. Mode controlling study on narrowlinewidth high power allfiber amplifier[C]Proc of SPIE. 2015, 9543: 95431L.

    [97] Nicholson J, Fini J, Yablon A. Demonstration of bend-induced nonlinearities in large-mode-area fibers[J]. Opt Lett, 32, 2562-2564(2007).

    [98] Li M J, Chen X, Liu A. Limit of effective area for single-mode operation in step-index large mode area laser fibers[J]. IEEE J Lightwave Tech, 27, 3010-3016(2009).

    [99] Walny M, Abramczyk J, Jacobson N, et al. Mechanical reliability of double clad fibers in typical fiber laser deployment conditions[C]Proc of SPIE. 2016: 97283A.

    [100] Beier F, Möller F, Sattler B. Experimental investigations on the TMI thresholds of low-NA Yb-doped single mode fibers[J]. Opt Lett, 43, 1291-1294(2018).

    [101] Hansen K, Alkeskjold T, Broeng J. Thermo-optical effects in high-power Ytterbium-doped fiber amplifiers[J]. Opt Express, 19, 23965-23980(2011).

    [102] RosalesGarcia A, Tobioka H, Abedin K, et al. 2.1 kW single mode continuous wave monolithic fiber laser[C]Proc of SPIE. 2015: 93441G.

    [103] Kanskar M, Zhang J, Koponen J, et al. Narrowb transversemodalinstability (TMI)free Ybdoped fiber amplifiers f directed energy application[C]Proc of SPIE. 2018: 105120F.

    [104] Tao R, Ma P, Wang X. Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers[J]. Laser Phys Lett, 14, 025002(2017).

    [105] HansJürgen Otto, Jauregui C, Stutzki F, et al. Dependence of mode instabilities on the extracted power of fiber laser systems[C]Advanced Solid State Lasers. 2013.

    [106] Xiao H, Leng J, Zhang H. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump[J]. Appl Opt, 54, 8166-8169(2015).

    [107] Yagodkin R, Platonov N, Yusim A, et al. >1.5 kW narrow linewidth CW diffractionlimited fiber amplifier with 40 nm bwidth[C]Proc of SPIE. 2015: 972807.

    [108] Platonov N, Shkurikhin O, Fomin V, et al. Highly efficient kW level singlemode ytterbium fiber lasers in allfiber fmat with diffractionlimited beam at wavelengths in 10001030 nm spectral range[C]Proc of SPIE. 2020: 1126003.

    [109] Johansen M M, Laurila M, Maack M D. Frequency resolved transverse mode instability in rod fiber amplifiers[J]. Opt Express, 21, 21847-21856(2013).

    [110] Otto H-J, Modsching N, Jauregui C. Impact of photodarkening on the mode instability threshold[J]. Opt Expres, 23, 15265-15277(2015).

    [111] Chen Y, Xu H, Xing Y. Mitigation of mode instability in laser oscillators based on deuterium loading[J]. Opt Express, 27, 25964-25973(2019).

    [112] Ballato J, Dragic P. Materials development for next generation optical fiber[J]. Materials, 7, 4411-4430(2014).

    [115] Möller F, Krämer R, Matzdf C, et al. MultikW perfmance analysis of Ybdoped monolithic singlemode amplifier oscillat setup[C]Proc of SPIE. 2019: 108970D.

    [116] Wang Y, Kitahara R, Kiyoyama W, et al. 8kW singlestage allfiber Ybdoped fiber laser with a BPP of 0.50 mmmrad[C]Proc of SPIE. 2020: 1126022.

    [117] Möller F, Distler V, Schreiber T, et al. Manipulating the heat load distribution by laser gain competition in TMIlimited fiber amplifiers[C]Proc of SPIE. 2020: 1126019.

    [118] Gaida C, Gebhardt M, Heuermann T, et al. Observation of transversemode instabilities in a thuliumdoped fiber amplifier[C]Proc of SPIE. 2019: 1089702.

    [119] Distler V, Möller F, Strecker M, et al. High power narrowlinewidth Raman amplifier its limitation[C]Proc of SPIE. 2020: 1126005.

    [121] Stihler C, Jauregui C, Kholaif S, et al. The sensitivity of the mode instability threshold to different types of intensity noise[C]Proc of SPIE. 2020: 1126018.

    [122] Smith A V, Smith J J. Overview of a steady-periodic model of modal instability in fiber amplifiers[J]. IEEE J Sel Topics Quantum Electron, 20, 472-483(2014).

    CLP Journals

    [1] Yuefang Yan, Rumao Tao, Yu Liu, Yuwei Li, Haoyu Zhang, Qiuhui Chu, Min Li, Qiang Shu, Xi Feng, Wenhui Huang, Feng Jing. Research progress and prospect of high power all-fiber coherent beam combination based on fiber combining devices[J]. High Power Laser and Particle Beams, 2023, 35(4): 041005

    Jianjun Wang, Yu Liu, Min Li, Xi Feng, Qiuhui Chu, Chun Zhang, Cong Gao, Rumao Tao, Honghuan Lin, Feng Jing. Ten-year review and prospect on mode instability research of fiber lasers[J]. High Power Laser and Particle Beams, 2020, 32(12): 121003
    Download Citation