• Photonics Research
  • Vol. 8, Issue 7, 1134 (2020)
Chengang Lyu1, Ziqi Liu1, Ziqiang Huo1, Chunfeng Ge2, Xin Cheng3、*, and Haw-Yaw Tam3
Author Affiliations
  • 1School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • 2School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • 3Photonics Research Center, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
  • show less
    DOI: 10.1364/PRJ.391160 Cite this Article Set citation alerts
    Chengang Lyu, Ziqi Liu, Ziqiang Huo, Chunfeng Ge, Xin Cheng, Haw-Yaw Tam. High-sensitivity, high-spatial-resolution distributed strain sensing based on a poly(methyl methacrylate) chirped fiber Bragg grating[J]. Photonics Research, 2020, 8(7): 1134 Copy Citation Text show less
    References

    [1] I. Floris, J. Madrigal, S. Sales, J. M. Adam, P. A. Calderón. Experimental study of the influence of FBG length on optical shape sensor performance. Opt. Laser. Eng., 126, 105878(2020).

    [2] X. Yang, R. Lindberg, W. Margulis, K. Fröjdh, F. Laurell. Continuously tunable, narrow-linewidth laser based on a semiconductor optical amplifier and a linearly chirped fiber Bragg grating. Opt. Express, 27, 14213-14220(2019).

    [3] T. Li, C. Shi, H. Ren. A high-sensitivity tactile sensor array based on fiber Bragg grating sensing for tissue palpation in minimally invasive surgery. IEEE/ASME Trans. Mechatronics, 23, 2306-2315(2018).

    [4] A. Ghoshal, J. Ayers, M. Gurvich, M. Urban, N. Bordick. Experimental investigations in embedded sensing of composite components in aerospace vehicles. Composites Part B, 71, 52-62(2015).

    [5] J. He, S. Yang, Q. Wei. Intensity-modulated magnetic field sensor based on fiber Bragg grating. AIP Adv., 9, 105303(2019).

    [6] H. Xia, C. Zhang, H. Mu, D. Sun. Edge technique for direct detection of strain and temperature based on optical time domain reflectometry. Appl. Opt., 48, 189-197(2009).

    [7] O. Xu, J. Zhang, J. Yao. High speed and high resolution interrogation of a fiber Bragg grating sensor based on microwave photonic filtering and chirped microwave pulse compression. Opt. Lett., 41, 4859-4862(2016).

    [8] E. J. Ahmad, C. Wang, D. Feng, Z. Yan, L. Zhang. High temporal and spatial resolution distributed fiber Bragg grating sensors using time-stretch frequency-domain reflectometry. J. Lightwave. Technol., 35, 3289-3295(2016).

    [9] K. Yuksel, V. Moeyaert, P. Mégret, M. Wuilpart. Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR. IEEE Sens. J., 12, 988-995(2011).

    [10] H. Liu, H. Liu, G. Peng. Tensile strain characterization of polymer optical fibre Bragg gratings. Opt. Commun., 251, 37-43(2005).

    [11] A. G. Leal-Junior, A. Theodosiou, R. Min, J. Casas, C. R. Díaz, W. M. Dos Santos, M. J. Pontes, A. A. Siqueira, C. Marques, K. Kalli. Quasi-distributed torque and displacement sensing on a series elastic actuator’s spring using FBG arrays inscribed in CYTOP fibers. IEEE Sens. J., 19, 4054-4061(2019).

    [12] G. Woyessa, A. Fasano, A. Stefani, C. Markos, O. Bang. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors. Opt. Express, 24, 1253-1260(2016).

    [13] A. G. Leal-Junior, H. R. O. Rocha, A. Theodosiou, A. Frizera, C. Marques, K. Kalli, M. R. N. Ribeiro. Optimizing linearity and sensitivity of 3D-printed diaphragms with chirped FBGs in CYTOP fibers. IEEE Access, 8, 31983-31991(2018).

    [14] A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. De Sena, L. C. Machado, A. Frizera, M. R. Ribeiro, M. J. Pontes. Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems. Opt. Express, 25, 30051-30060(2017).

    [15] X. Cheng, Y. Liu, C. Yu. Gas pressure sensor based on BDK-doped polymer optical fiber. Micromachines, 10, 717(2019).

    [16] J. Bonefacino, X. Cheng, C.-F. J. Pun, S. T. Boles, H.-Y. Tam. Impact of high UV fluences on the mechanical and sensing properties of polymer optical fibers for high strain measurements. Opt. Express, 28, 1158-1167(2020).

    [17] R. Min, B. Ortega, C. Marques. Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask. Opt. Express, 26, 4411-4420(2018).

    [18] C. Marques, P. Antunes, P. Mergo, D. Webb, P. André. Chirped Bragg gratings in PMMA step-index polymer optical fiber. IEEE Photon. Technol. Lett., 29, 500-503(2017).

    [19] J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, S. T. Boles. Ultra-fast polymer optical fibre Bragg grating inscription for medical devices. Light Sci. Appl., 7, 17161(2018).

    [20] R. Gafsi, M. A. El-Sherif. Analysis of induced-birefringence effects on fiber Bragg gratings. Opt. Fiber. Technol., 6, 299-323(2000).

    [21] A. P. Hilton, P. S. Light, L. Talbot, A. N. Luiten. Optimal design for spectral narrowing and fast frequency sweep of an interferometer-stabilized laser. Opt. Lett., 45, 45-48(2020).

    CLP Journals

    [1] Yosuke Mizuno, Antreas Theodosiou, Kyriacos Kalli, Sascha Liehr, Heeyoung Lee, Kentaro Nakamura. Distributed polymer optical fiber sensors: a review and outlook[J]. Photonics Research, 2021, 9(9): 1719

    Chengang Lyu, Ziqi Liu, Ziqiang Huo, Chunfeng Ge, Xin Cheng, Haw-Yaw Tam. High-sensitivity, high-spatial-resolution distributed strain sensing based on a poly(methyl methacrylate) chirped fiber Bragg grating[J]. Photonics Research, 2020, 8(7): 1134
    Download Citation