• Optics and Precision Engineering
  • Vol. 29, Issue 10, 2495 (2021)
Xiao-wei FENG*, Hai-yun HU, Rui-qing ZHUANG, and Min HE
Author Affiliations
  • Department of Electrical Automation, Shanghai Maritime University, Shanghai201306, China
  • show less
    DOI: 10.37188/OPE.20212910.2495 Cite this Article
    Xiao-wei FENG, Hai-yun HU, Rui-qing ZHUANG, Min HE. Adaptive reconstruction of 3D point cloud by sparse optimization[J]. Optics and Precision Engineering, 2021, 29(10): 2495 Copy Citation Text show less
    References

    [1] S K YADAV, U REITEBUCH, M SKRODZKI et al. Constraint-based point set denoising using normal voting tensor and restricted quadratic error metrics. Computers & Graphics, 74, 234-243(2018).

    [2] 2冯肖维, 姜晨, 何敏, 等. 三维距离图像基于特征估计的自适应平滑[J]. 光学 精密工程, 2019, 27(12): 2693-2701. doi: 10.3788/ope.20192712.2693FENGX W, JIANGCH, HEM, et al. Adaptive smoothing for three-dimensional range image based on feature estimation[J]. Opt. Precision Eng., 2019, 27(12): 2693-2701. (in Chinese). doi: 10.3788/ope.20192712.2693

    [3] M ALEXA, J BEHR, D COHEN-OR et al. Computing and rendering point set surfaces. IEEE Transactions on Visualization and Computer Graphics, 9, 3-15(2003).

    [4] D LEVIN. Mesh-independent Surface Interpolation. Geometric Modeling for Scientific Visualization, 37-49(2004).

    [5] N AMENTA. Defining point-set surfaces. ACM Transactions on Graphics, 23, 264-270(2004).

    [6] G GUENNEBAUD, M GROSS. Algebraic point set surfaces. ACM Transactions on Graphics, 26, 23(2007).

    [7] A C ÖZTIRELI, G GUENNEBAUD, M GROSS. Feature preserving point set surfaces based on non-linear kernel regression. Computer Graphics Forum, 28, 493-501(2009).

    [8] L HE, S SCHAEFER. Mesh denoising via L 0 minimization. ACM Transactions on Graphics, 32, 1-8(2013).

    [9] H AVRON, A SHARF, C GREIF et al. ℓ 1 -Sparse reconstruction of sharp point set surfaces. ACM Transactions on Graphics, 29, 1-12(2010).

    [10] L XU, C W LU, Y XU et al. Image smoothing via L 0 gradient minimization. ACM Transactions on Graphics, 30, 1-12(2011).

    [11] Y J SUN, S SCHAEFER, W P WANG. Denoising point sets via L0 minimization. Computer Aided Geometric Design, 35/36, 2-15(2015).

    [12] E J CANDÈS, M B WAKIN, S P BOYD. Enhancing sparsity by reweighted ℓ _1 minimization. Journal of Fourier Analysis and Applications, 14, 877-905(2008).

    [13] 13崔鑫, 闫秀天, 李世鹏. 保持特征的散乱点云数据去噪[J]. 光学 精密工程, 2017, 25(12): 3169-3178. doi: 10.3788/OPE.20172512.3169CUIX, YANX T, LISH P. Feature-preserving scattered point cloud denoising[J]. Opt. Precision Eng., 2017, 25(12): 3169-3178. (in Chinese). doi: 10.3788/OPE.20172512.3169

    [14] 14赵夫群, 周明全. 层次化点云去噪算法[J]. 光学 精密工程, 2020, 28(7): 1618-1625. doi: 10.37188/OPE.20202807.1618ZHAOF Q, ZHOUM Q. Hierarchical point cloud denoising algorithm[J]. Opt. Precision Eng., 2020, 28(7): 1618-1625. (in Chinese). doi: 10.37188/OPE.20202807.1618

    [15] J ZHANG, J J CAO, X P LIU et al. Multi-normal estimation via pair consistency voting. IEEE Transactions on Visualization and Computer Graphics, 25, 1693-1706(2019).

    [16] T R JONES, F DURAND, M ZWICKER. Normal improvement for point rendering. IEEE Computer Graphics and Applications, 24, 53-56(2004).

    [17] Y T WANG, H Y FENG, F É DELORME et al. An adaptive normal estimation method for scanned point clouds with sharp features. Computer-Aided Design, 45, 1333-1348(2013).

    [18] X CHENG, M ZENG, J P LIN et al. Efficient L0 resampling of point sets. Computer Aided Geometric Design, 75, 101790(2019).

    Xiao-wei FENG, Hai-yun HU, Rui-qing ZHUANG, Min HE. Adaptive reconstruction of 3D point cloud by sparse optimization[J]. Optics and Precision Engineering, 2021, 29(10): 2495
    Download Citation