• Photonics Research
  • Vol. 13, Issue 1, 225 (2025)
Pengcheng Tang1, Liming Si1,*, Qianqian Yuan1, Jie Tian2..., Jiaxuan Deng1, Tianyu Ma1, Xiue Bao1, Chong He2 and Weiren Zhu2,3|Show fewer author(s)
Author Affiliations
  • 1Beijing Key Laboratory of Millimeter Wave and Terahertz Technology, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
  • 2Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3e-mail: weiren.zhu@sjtu.edu.cn
  • show less
    DOI: 10.1364/PRJ.543744 Cite this Article Set citation alerts
    Pengcheng Tang, Liming Si, Qianqian Yuan, Jie Tian, Jiaxuan Deng, Tianyu Ma, Xiue Bao, Chong He, Weiren Zhu, "Dynamic generation of multiplexed vortex beams by a space-time-coding metasurface," Photonics Res. 13, 225 (2025) Copy Citation Text show less
    References

    [1] J. Wang, J. Liu, S. Li. Orbital angular momentum and beyond in free-space optical communications. Nanophotonics, 11, 645-680(2022).

    [2] Y. Guo, S. Zhang, M. Pu. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci. Appl., 10, 63(2021).

    [3] J. Liu, J. Zhang, J. Liu. 1-Pbps orbital angular momentum fibre-optic transmission. Light Sci. Appl., 11, 202(2022).

    [4] R. Chen, H. Zhou, M. Moretti. Orbital angular momentum waves: generation, detection, and emerging applications. Commun. Surveys Tuts., 22, 840-868(2020).

    [5] Z. Liu, S. Gao, Z. Lai. Broadband, low-crosstalk, and massive-channels OAM modes de/multiplexing based on optical diffraction neural network. Laser Photon. Rev., 17, 220536(2023).

    [6] S. Cai, W. Sheng, Z. Zhang. Hybrid channel coding for OAM division multiplexing free space optical communication systems. Opt. Express, 31, 30446-30457(2023).

    [7] W. Chen, Q. Lin, W. Chen. 65,536-ary orbital angular momentum–shift keying free-space optical communication based on few-shot learning. Opt. Lett., 48, 1886-1889(2023).

    [8] W. Wang, P. Wang, L. Guo. Performance investigation of OAMSK modulated wireless optical system over turbulent ocean using convolutional neural networks. J. Lightwave Technol., 38, 1753-1765(2020).

    [9] Z. Zhu, S. Zheng, X. Xiong. A compact pattern reconfiguration antenna based on multimode plane spiral OA. IEEE Trans. Antennas Propag., 69, 1168-1172(2021).

    [10] Y. Li, M. Jiang, G. Zhang. Achievable rate maximization for intelligent reflecting surface-assisted orbital angular momentum-based communication systems. IEEE Trans. Veh. Technol., 70, 7277-7282(2021).

    [11] A. H. Tavabi, P. Rosi, A. Roncaglia. Generation of electron vortex beams with over 1000 orbital angular momentum quanta using a tunable electrostatic spiral phase plate. Appl. Phys. Lett., 121, 073506(2022).

    [12] R. Wang, M. Wang, Y. Zhang. Generation of orbital angular momentum multiplexing millimeter waves based on a circular traveling wave antenna. Opt. Express, 31, 5131-5139(2023).

    [13] A. Valizade Shahmirzadi, A. A. Kishk. OAM carrying vortex beam mode interconversion using modular cascaded transmitarrays. IEEE Trans. Microwave Theory Tech., 70, 3591-3605(2022).

    [14] S. N. Khonina, A. V. Ustinov, V. I. Logachev. Properties of vortex light fields generated by generalized spiral phase plates. Phys. Rev. A, 101, 043829(2020).

    [15] Y. Yuan, S. Sun, Y. Chen. A fully phase-modulated metasurface as an energy-controllable circular polarization router. Adv. Sci., 7, 2001437(2020).

    [16] A. Leitis, A. Heßler, S. Wahl. All-dielectric programmable Huygens’ metasurfaces. Adv. Funct. Mater., 30, 1910259(2020).

    [17] L. Dong, L. Si, H. Xu. Rapid customized design of a conformal optical transparent metamaterial absorber based on the circuit analog optimization method. Opt. Express, 30, 8303-8316(2022).

    [18] M. Liu, P. Huo, W. Zhu. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nat. Commun., 12, 2230(2021).

    [19] Q. Xiao, Q. Ma, T. Yan. Orbital-angular-momentum-encrypted holography based on coding information metasurface. Adv. Opt. Mater., 9, 2002155(2021).

    [20] G. Cheng, L. Si, Q. Shen. Transmissive Pancharatnam-Berry metasurfaces with stable amplitude and precise phase modulations using dartboard discretization configuration. Opt. Express, 31, 30815-30831(2023).

    [21] H. Sroor, Y.-W. Huang, B. Sephton. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics, 14, 498-503(2020).

    [22] S. J. Li, Z. Y. Li, G. S. Huang. Digital coding transmissive metasurface for multi-OAM-beam. Front. Phys., 17, 62501(2022).

    [23] Y. Wang, K. Zhang, Y. Yuan. Planar vortex beam generator for circularly polarized incidence based on FSS. IEEE Trans. Antennas Propag., 68, 1514-1522(2020).

    [24] Q. Li, C. Wu, Z. Zhang. High-purity multi-mode vortex beam generation with full complex-amplitude-controllable metasurface. IEEE Trans. Antennas Propag., 71, 774-782(2023).

    [25] Y. Li, J. Lin, H. Guo. A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption. Adv. Opt. Mater., 8, 1901548(2020).

    [26] Q. Li, M. Gupta, X. Zhang. Active control of asymmetric Fano resonances with graphene–silicon-integrated terahertz metamaterials. Adv. Mater. Technol., 5, 1900840(2020).

    [27] P. Tang, L. Si, L. Dong. Tunable broadband terahertz graphene metasurface for complex-amplitude vortex beam generator and hologram. Opt. Laser Technol., 175, 110874(2024).

    [28] Q. Ma, Q. R. Hong, X. X. Gao. Smart sensing metasurface with self-defined functions in dual polarizations. Nanophotonics, 9, 3271-3278(2020).

    [29] X. Bai, F. Zhang, L. Sun. Dynamic millimeter-wave OAM beam generation through programmable metasurface. Nanophotonics, 11, 1389-1399(2022).

    [30] X. Bai, F. Kong, Y. Sun. High-efficiency transmissive programmable metasurface for multimode OAM generation. Adv. Opt. Mater., 8, 2000570(2020).

    [31] Y. Hu, S. N. Chen, Y. Shi. Space-time coding metasurface for multifunctional holographic imaging. Adv. Mater. Technol., 9, 2302164(2024).

    [32] R. Feng, B. Ratni, J. Yi. Versatile metasurface platform for electromagnetic wave tailoring. Photon. Res., 9, 1650-1659(2021).

    [33] J. Y. Dai, L. X. Yang, J. C. Ke. High-efficiency synthesizer for spatial waves based on space-time-coding digital metasurface. Laser Photon. Rev., 14, 1900133(2020).

    [34] Q. Hu, W. Yang, J. Wang. Dynamically generating diverse multi-beams with on-demand polarizations through space-time coding metasurface. Adv. Opt. Mater., 12, 2300093(2023).

    [35] L. Zhang, X. Chen, S. Liu. Space-time-coding digital metasurfaces. Nat. Commun., 9, 4334(2018).

    [36] J. Yang, J. C. Ke, M. Chen. Control of the harmonic near-field distributions by an active metasurface loaded with pin diodes. Photon. Res., 9, 344-350(2021).

    [37] H. Wu, X. X. Gao, L. Zhang. Harmonic information transitions of spatiotemporal metasurfaces. Light: Sci. Appl., 9, 198(2020).

    [38] L. Zhang, M. Z. Chen, W. Tang. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat. Electron., 4, 218-227(2021).

    [39] S. Taravati, G. V. Eleftheriades. Microwave space-time-modulated metasurfaces. ACS Photon., 9, 305-318(2022).

    [40] V. Bruno, C. DeVault, S. Vezzoli. Negative refraction in time-varying strongly coupled plasmonic-antenna–epsilon-near-zero systems. Phys. Rev. Lett., 124, 043902(2020).

    [41] D. Ramaccia, D. L. Sounas, A. Alu. Phase-induced frequency conversion and Doppler effect with time-modulated metasurfaces. IEEE Trans. Antennas Propag., 68, 1607-1617(2020).

    [42] H. N. Bui, N. H. Phi, A. Alsaadi. Space–time-modulated reconfigurable metamaterial based on a field-focused cavity for nonreciprocal transmission control and frequency conversion. ACS Appl. Mater. Interfaces, 14, 26931-26940(2022).

    [43] J. Park, B. G. Jeong, S. I. Kim. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol., 16, 69-76(2021).

    [44] C. Meng, P. C. V. Thrane, F. Ding. Dynamic piezoelectric MEMS-based optical metasurfaces. Sci. Adv., 7, eabg5639(2021).

    [45] J. Zhang, Y. Kosugi, M. Ogasawara. High-speed metasurface modulator using perfectly absorptive bimodal plasmonic resonance. APL Photon., 8, 121304(2023).

    [46] W. Yang, K. Chen, Y. Zheng. Angular-adaptive reconfigurable spin-locked metasurface retroreflector. Adv. Sci., 8, 2100885(2021).

    [47] R. Zhu, J. Wang, C. Ding. Multi-field-sensing metasurface with robust self-adaptive reconfigurability. Nanophotonics, 12, 1337-1345(2023).

    [48] S. C. Malek, H.-S. Ee, R. Agarwal. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett., 17, 3641-3645(2017).

    [49] Y. Meng, Z. Liu, Z. Xie. Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface. Photon. Res., 8, 564-576(2020).

    [50] Z. Xie, T. Lei, F. Li. Ultra-broadband on-chip twisted light emitter for optical communications. Light: Sci. Appl., 7, 18001(2018).

    [51] J. Wang, J.-Y. Yang, I. M. Fazal. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [52] G. Naik, J. Liu, J.-M. J. Park. Coexistence of wireless technologies in the 5  GHz bands: a survey of existing solutions and a roadmap for future research. Commun. Surveys Tuts., 20, 1777-1798(2018).

    Pengcheng Tang, Liming Si, Qianqian Yuan, Jie Tian, Jiaxuan Deng, Tianyu Ma, Xiue Bao, Chong He, Weiren Zhu, "Dynamic generation of multiplexed vortex beams by a space-time-coding metasurface," Photonics Res. 13, 225 (2025)
    Download Citation