• Journal of Applied Optics
  • Vol. 45, Issue 5, 903 (2024)
Ligang TAN, Meiting WEI*, Jie LI, and Mingwei LUO
Author Affiliations
  • Technology Innovation Center, Sichuan Jiu Zhou Electric Group Co.,Ltd., Mianyang 621000, China
  • show less
    DOI: 10.5768/JAO202445.0501004 Cite this Article
    Ligang TAN, Meiting WEI, Jie LI, Mingwei LUO. Design and simulation of 0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure[J]. Journal of Applied Optics, 2024, 45(5): 903 Copy Citation Text show less
    Diagram of 5 separate layers structure
    Fig. 1. Diagram of 5 separate layers structure
    Schematic diagram of equivalent resonance circuit
    Fig. 2. Schematic diagram of equivalent resonance circuit
    Optimal design flow of 5 separate layers structure by genetic algorithm
    Fig. 3. Optimal design flow of 5 separate layers structure by genetic algorithm
    0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure
    Fig. 4. 0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure
    Reflection loss and absorption efficiency of each frequency in the first partition
    Fig. 5. Reflection loss and absorption efficiency of each frequency in the first partition
    Reflection loss and absorption efficiency of each frequency in the second partition
    Fig. 6. Reflection loss and absorption efficiency of each frequency in the second partition
    Reflection loss and absorption efficiency of each frequency in the third partition
    Fig. 7. Reflection loss and absorption efficiency of each frequency in the third partition
    Total absorption efficiency curve of ultra-wide spectrum metamaterial absorption structure in wavelength range of 0.2 μm~20 μm
    Fig. 8. Total absorption efficiency curve of ultra-wide spectrum metamaterial absorption structure in wavelength range of 0.2 μm~20 μm
    Absorption property simulation of partition 1 using optimal structure parameters
    Fig. 9. Absorption property simulation of partition 1 using optimal structure parameters
    Absorption property simulation of partition 2 using optimal structure parameters
    Fig. 10. Absorption property simulation of partition 2 using optimal structure parameters
    Absorption property simulation of partition 3 using optimal structure parameters
    Fig. 11. Absorption property simulation of partition 3 using optimal structure parameters
    Lorentz fit curve for polishing absorption cycle indent of partition 1
    Fig. 12. Lorentz fit curve for polishing absorption cycle indent of partition 1
    Absorption efficiency simulation of five separation layers in partition 1 at different incident angles
    Fig. 13. Absorption efficiency simulation of five separation layers in partition 1 at different incident angles
    Absorption efficiency simulation of five separation layers in partition 2 at different incident angles
    Fig. 14. Absorption efficiency simulation of five separation layers in partition 2 at different incident angles
    Absorption efficiency simulation of five separation layers in partition 3 at different incident angles
    Fig. 15. Absorption efficiency simulation of five separation layers in partition 3 at different incident angles
    Total absorption efficiency curves of ultra-wide spectrum metamaterial absorption structure in range of 0.2 μm~20 μm at different angles
    Fig. 16. Total absorption efficiency curves of ultra-wide spectrum metamaterial absorption structure in range of 0.2 μm~20 μm at different angles
    NameSurface mental structure dimension/nmDielectric layer thickness/nm
    The fifth layer of Partition 331.38.63
    The fourth layer of Partition 320329.0
    The third layer of Partition 316720.7
    The second layer of Partition 352324.3
    The first layer of Partition 333412.7
    The fifth layer of Partition 2175190
    The fourth layer of Partition 2611158
    The third layer of Partition 2534130
    The second layer of Partition 2841121
    The first layer of Partition 21 670163
    The fifth layer of Partition 1392143.6
    The fourth layer of Partition 12 490814
    The third layer of Partition 11 850516
    The second layer of Partition 15 200334
    The first layer of Partition 14 950478
    Table 1. Parameters of 3 scales 5 separate layers structure
    Frequency/THzReflection loss/dBAbsorption efficiency
    12.21−14.080.802 4
    19.42−20.100.901 2
    35.98−21.160.912 5
    49.43−18.990.887 7
    60.64−20.090.901 1
    71.29−19.000.887 8
    84.75−21.140.912 3
    97.11−20.550.906 2
    132.2−19.420.893 1
    179.9−20.540.906 1
    224.8−19.610.895 4
    286.4−22.520.925 1
    350.9−19.620.895 5
    395.7−20.540.906 0
    443.3−19.400.892 9
    305.2−13.830.796 5
    470.1−20.680.907 6
    650.5−19.230.890 7
    913.6−20.960.910 4
    1208−19.080.888 9
    1516−21.350.914 4
    1824−19.020.888 1
    2119−21.040.911 3
    2217−20.390.904 4
    Table 2. Reflection loss and absorption efficiency at typical frequencies
    ParametersThe first layerThe second layerThe third layerThe fourth layerThe fifth layer
    Resistance1(Ω)247.74493.97787.701332.501130.59
    Inductance1(H)1.89×10−161.67×10−163.99×10−176.13×10−172.06×10−16
    Condenser1(F)8.03×10−137.91×10−131.10×10−131.36×10−133.39×10−15
    Resistance2(Ω)341.33647.69580.541865.573177.54
    Inductance2(H)2.021×10−162.43×10−169.84×10−164.98×10−162.56×10−16
    Condenser2(F)2.97×10−133.58×10−139.68×10−146.45×10−145.53×10−15
    Resistance3(Ω)316.04421.521309.93894.811809.43
    Inductance3(H)1.75×10−161.78×10−164.93×10−171.14×10−162.52×10−16
    Condenser3(F)8.08×10−133.67×10−139.50×10−148.05×10−145.84×10−14
    Table 3. Optimal parameters of equivalent resonant circuit
    Incident angles/(°)Absorption efficiency better than 80%
    Partition 1 frequency range/ THzPartition 2 frequency range / THzPartition 3 frequency range / THz
    0[12.21,88.67][64.12,443.30][310.30,2 217]
    10[12.41,88.67][65.15,443.30][315.50,2 217]
    20[12.62,88.67][67.22,443.30][325.80,2 217]
    30[13.65,88.67][73.40,443.30][346.40,2 217]
    40[15.30,88.67][83.71,443.30][397.90,2 217]
    50[18.80,88.67][105.40,443.30][495.90,2 217]
    60[27.46,88.67][161.00,238.80][743.30,1 152.00]
    Table 4. Absorption efficiency of five separation layers structure at different incident angles
    Ligang TAN, Meiting WEI, Jie LI, Mingwei LUO. Design and simulation of 0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure[J]. Journal of Applied Optics, 2024, 45(5): 903
    Download Citation