• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 6, 2117 (2022)
CHEN Jingjing1、*, HUANG Zhangyi2, QI Jianqi3, DENG Mao1, SHI Yang1, HU Chunfeng4, and WANG Haomin2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: Cite this Article
    CHEN Jingjing, HUANG Zhangyi, QI Jianqi, DENG Mao, SHI Yang, HU Chunfeng, WANG Haomin. Preparation, Mechanical Properties and Oxidation Behavior of(Ti0.25Zr0.25Nb0.25Ta0.25)C High-Entropy Ceramics[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2117 Copy Citation Text show less
    References

    [1] ZHANG G J, NI D W, ZOU J, et al. Inherent anisotropy in transition metal diborides and microstructure/property tailoring in ultra-high temperature ceramics: a review[J]. Journal of the European Ceramic Society, 2018, 38(2): 371-389.

    [2] ZHANG R Z, REECE M J. Review of high entropy ceramics: design, synthesis, structure and properties[J]. Journal of Materials Chemistry A, 2019, 7(39): 22148-22162.

    [3] REZAEI F, KAKROUDI M G, SHAHEDIFAR V, et al. Densification, microstructure and mechanical properties of hot pressed tantalum carbide[J]. Ceramics International, 2017, 43(4): 3489-3494.

    [4] LIU J X, ZHANG G J, XU F F, et al. Densification, microstructure evolution and mechanical properties of WC doped HfB2-SiC ceramics[J]. Journal of the European Ceramic Society, 2015, 35(10): 2707-2714.

    [5] WUCHINA E, OPILA E, OPEKA M, et al. UHTCs: ultra-high temperature ceramic materials for extreme environment applications[J]. The Electrochemical Society Interface, 2007, 16(4): 30-36.

    [6] CEDILLOS-BARRAZA O, MANARA D, BOBORIDIS K, et al. Investigating the highest melting temperature materials: a laser melting study of the TaC-HfC system[J]. Scientific Reports, 2016, 6: 37962.

    [7] GILD J, SAMIEE M, BRAUN J L, et al. High-entropy fluorite oxides[J]. Journal of the European Ceramic Society, 2018, 38(10): 3578-3584.

    [8] ANAND G, WYNN A P, HANDLEY C M, et al. Phase stability and distortion in high-entropy oxides[J]. Acta Materialia, 2018, 146: 119-125.

    [9] CASTLE E, CSANDI T, GRASSO S, et al. Processing and properties of high-entropy ultra-high temperature carbides[J]. Scientific Reports, 2018, 8: 8609.

    [10] LU K, LIU J X, WEI X F, et al. Microstructures and mechanical properties of high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C ceramics with the addition of SiC secondary phase[J]. Journal of the European Ceramic Society, 2020, 40(5): 1839-1847.

    [11] HARRINGTON T J, GILD J, SARKER P, et al. Phase stability and mechanical properties of novel high entropy transition metal carbides[J]. Acta Materialia, 2019, 166: 271-280.

    [12] YAN X L, CONSTANTIN L, LU Y F, et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity[J]. Journal of the American Ceramic Society, 2018, 101(10): 4486-4491.

    [13] WANG F, YAN X, SHAO L, et al. Irradiation damage behavior in novel high-entropy carbide ceramics[J]. Transactions, 2019, 120: 327.

    [14] LI Z T, WANG Z, WU Z G, et al. Phase, microstructure and related mechanical properties of a series of (NbTaZr)C-Based high entropy ceramics[J]. Ceramics International, 2021, 47(10): 14341-14347.

    [15] SARKER P, HARRINGTON T, TOHER C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors [J]. Nature Communications, 2018, 9: 4980.

    [16] WANG F, YAN X L, WANG T Y, et al. Irradiation damage in (Zr0.25Ta0.25Nb0.25Ti0.25)C high-entropy carbide ceramics[J]. Acta Materialia, 2020, 195: 739-749.

    [17] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583.

    [18] OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1): 3-20.

    [19] WANG K, CHEN L, XU C G, et al. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic[J]. Journal of Materials Science & Technology, 2020, 39: 99-105.

    [20] LIU D Q, ZHANG A J, JIA J G, et al. Phase evolution and properties of (VNbTaMoW)C high entropy carbide prepared by reaction synthesis[J]. Journal of the European Ceramic Society, 2020, 40(8): 2746-2751.

    [21] CHEN H, WU Z H, LIU M L, et al. Synthesis, microstructure and mechanical properties of high-entropy (VNbTaMoW)C5 ceramics[J]. Journal of the European Ceramic Society, 2021, 41(15): 7498-7506.

    [22] BRAIC V, VLADESCU A, BALACEANU M, et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings[J]. Surface and Coatings Technology, 2012, 211: 117-121.

    [23] GILD J, ZHANG Y, HARRINGTON T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Scientific Reports, 2016, 6: 37946.

    [24] LIU J X, SHEN X Q, WU Y, et al. Mechanical properties of hot-pressed high-entropy diboride-based ceramics[J]. Journal of Advanced Ceramics, 2020, 9(4): 503-510.

    [25] ZHANG H Z, AKHTAR F. Effect of SiC on microstructure, phase evolution, and mechanical properties of spark-plasma-sintered high-entropy ceramic composite[J]. Ceramics, 2020, 3(3): 359-371.

    [26] KUMAR A, GOKHALE A, GHOSH S, et al. Effect of nano-sized sintering additives on microstructure and mechanical properties of Si3N4 ceramics[J]. Materials Science and Engineering: A, 2019, 750: 132-140.

    [27] YANG Y, WANG W, GAN G Y, et al. Structural, mechanical and electronic properties of (TaNbHfTiZr)C high entropy carbide under pressure: ab initio investigation[J]. Physica B: Condensed Matter, 2018, 550: 163-170.

    [28] MOSKOVSKIKH D O, VOROTILO S, SEDEGOV A S, et al. High-entropy (HfTaTiNbZr)C and (HfTaTiNbMo)C carbides fabricated through reactive high-energy ball milling and spark plasma sintering[J]. Ceramics International, 2020, 46(11): 19008-19014.

    [29] REBELO DE FIGUEIREDO M, ABAD M D, HARRIS A J, et al. Nanoindentation of chemical-vapor deposited Al2O3 hard coatings at elevated temperatures[J]. Thin Solid Films, 2015, 578: 20-24.

    [30] ZOU J, RUBIO V, BINNER J. Thermoablative resistance of ZrB2-SiC-WC ceramics at 2 400 ℃[J]. Acta Materialia, 2017, 133: 293-302.

    CHEN Jingjing, HUANG Zhangyi, QI Jianqi, DENG Mao, SHI Yang, HU Chunfeng, WANG Haomin. Preparation, Mechanical Properties and Oxidation Behavior of(Ti0.25Zr0.25Nb0.25Ta0.25)C High-Entropy Ceramics[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2117
    Download Citation