• Frontiers of Optoelectronics
  • Vol. 5, Issue 3, 266 (2012)
Junjie DAI1, Longyan YUAN2, Qize ZHONG2, Fengchao ZHANG2, Hongfei CHEN2, Chao YOU2, Xiaohong FAN2, Bin HU2, and Jun ZHOU2、*
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics (WNLO), College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2WNLO, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-012-0253-2 Cite this Article
    Junjie DAI, Longyan YUAN, Qize ZHONG, Fengchao ZHANG, Hongfei CHEN, Chao YOU, Xiaohong FAN, Bin HU, Jun ZHOU. A simple infrared nanosensor array based on carbon nanoparticles[J]. Frontiers of Optoelectronics, 2012, 5(3): 266 Copy Citation Text show less
    References

    [1] Takei K, Takahashi T, Ho J C, Ko H, Gillies A G, Leu PW, Fearing R S, Javey A. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Materials, 2010, 9(10): 821-826

    [2] Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T. A rubberlike stretchable active matrix using elastic conductors. Science, 2008, 321(5895): 1468-1472

    [3] Ko H C, Stoykovich M P, Song J Z, Malyarchuk V, Choi W M, Yu C J, Geddes J B 3rd, Xiao J L,Wang S D, Huang Y G, Rogers J A. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008, 454(7205): 748-753

    [4] Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K, Takamiya M, Sakurai T, Someya T. Organic nonvolatile memory transistors for flexible sensor arrays. Science, 2009, 326(5959): 1516-1519

    [5] Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba D N, Hata K. A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnology, 2011, 6(5): 296-301

    [6] Yuan L Y, Dai J J, Fan X H, Song T, Tao Y T,Wang K, Xu Z, Zhang J, Bai X D, Lu P X, Chen J, Zhou J,Wang Z L. Self-cleaning flexible infrared nanosensor based on carbon nanoparticles. ACS Nano, 2011, 5(5): 4007-4013

    [7] Xiao X, Yuan L, Zhong J, Ding T, Liu Y, Cai Z, Rong Y, Han H, Zhou J, Wang Z L. High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Advanced Materials, 2011, 23(45): 5440-5444

    [8] Yuan L Y, Tao Y T, Chen J, Dai J J, Song T, Ruan M Y, Ma Z W, Gong L, Liu K, Zhang X H, Hu X J, Zhou J, Wang Z L. Carbon nanoparticles on carbon fabric for flexible and high-performance field emitters. Advanced Functional Materials, 2011, 21(11): 2150-2154

    [9] McDonald S A, Konstantatos G, Zhang S G, Cyr P W, Klem E J D, Levina L, Sargent E H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Materials, 2005, 4(2): 138-142

    [10] Johnston K W, Pattantyus-Abraham A G, Clifford J P, Myrskog S H, MacNeil D D, Levina L, Sargent E H. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Applied Physics Letters, 2008, 92(15): 151115

    [11] Klem E J D, MacNeil D D, Levina L, Sargent E H. Solution processed photovoltaic devices with 2% infrared monochromatic power conversion efficiency: performance optimization and oxide formation. Advanced Materials, 2008, 20(18): 3433-3439

    [12] Xiao L, Zhang Y Y, Wang Y, Liu K,Wang Z, Li T Y, Jiang Z, Shi J P, Liu L A, Li Q Q, Zhao Y G, Feng Z H, Fan S S, Jiang K L. A polarized infrared thermal detector made from super-aligned multiwalled carbon nanotube films. Nanotechnology, 2011, 22(2): 025502

    [13] Rauch T, Boberl M, Tedde S F, Furst J, Kovalenko M V, Hesser G N, Lemmer U, Heiss W, Hayden O. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nature Photonics, 2009, 3(6): 332-336

    [14] Schdel R, Ott T, Genzel R, Hofmann R, Lehnert M, Eckart A, Mouawad N, Alexander T, Reid M J, Lenzen R, Hartung M, Lacombe F, Rouan D, Gendron E, Rousset G, Lagrange A M, Brandner W, Ageorges N, Lidman C, Moorwood A F M, Spyromilio J, Hubin N, Menten K M. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature, 2002, 419(6908): 694-696

    [15] Xu F L, Liu X, Fujimura K. Pedestrian detection and tracking with night vision. IEEE Transactions on Intelligent Transportation Systems, 2005, 6(1): 63-71

    [16] Bachilo S M, Strano M S, Kittrell C, Hauge R H, Smalley R E, Weisman R B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 2002, 298(5602): 2361-2366

    [17] Freitag M, Martin Y, Misewich J A, Martel R, Avouris P H. Photoconductivity of single carbon nanotubes. Nano Letters, 2003, 3(8): 1067-1071

    [18] Itkis M E, Borondics F, Yu A P, Haddon R C. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science, 2006, 312(5772): 413-416

    [19] Pradhan B, Setyowati K, Liu H Y, Waldeck D H, Chen J. Carbon nanotube-polymer nanocomposite infrared sensor. Nano Letters, 2008, 8(4): 1142-1146

    [20] Liu H P, Ye T, Mao C D. Fluorescent carbon nanoparticles derived from candle soot. Angewandte Chemie International Edition, 2007, 46(34): 6473-6475

    [21] Yang S T, Cao L, Luo P G J, Lu F S,Wang X,Wang H F, MezianiM J, Liu Y F, Qi G, Sun Y P. Carbon dots for optical imaging in vivo. Journal of the American Chemical Society, 2009, 131(32): 11308-11309

    [22] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97(18): 187401

    [23] Pimenta M A, Dresselhaus G, Dresselhaus M S, Canado L G, Jorio A, Saito R. Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics, 2007, 9(11): 1276-1291

    Junjie DAI, Longyan YUAN, Qize ZHONG, Fengchao ZHANG, Hongfei CHEN, Chao YOU, Xiaohong FAN, Bin HU, Jun ZHOU. A simple infrared nanosensor array based on carbon nanoparticles[J]. Frontiers of Optoelectronics, 2012, 5(3): 266
    Download Citation