• Chinese Optics Letters
  • Vol. 22, Issue 11, 111302 (2024)
Chao Zhou1, Ke Yin2,*, Runlin Miao3, Sirui Kong2..., Wei Dong2 and Tian Jiang4,**|Show fewer author(s)
Author Affiliations
  • 1College of Computer, National University of Defense Technology, Changsha 410073, China
  • 2College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 3National Innovation Institute of Defense Technology, Academy of Military Sciences PLA China, Beijing 100071, China
  • 4Institute for Quantum Science and Technology, College of Science, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/COL202422.111302 Cite this Article Set citation alerts
    Chao Zhou, Ke Yin, Runlin Miao, Sirui Kong, Wei Dong, Tian Jiang, "Continuous and deterministic generation of chip-based frequency combs with a computer program," Chin. Opt. Lett. 22, 111302 (2024) Copy Citation Text show less
    References

    [1] T. Herr, V. Brasch, J. D. Jost et al. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2014).

    [2] Z. Li, Y. Xu, S. Shamailov et al. Ultrashort dissipative Raman solitons in Kerr resonators driven with phase-coherent optical pulses. Nat. Photonics, 18, 46-53(2024).

    [3] J. Liu, F. Bo, L. Chang et al. Emerging material platforms for integrated microcavity photonics. Sci. China Phys. Mech. Astron., 65, 14-32(2022).

    [4] J. Ma, X. Jiang, M. Xiao. Kerr frequency combs in large-size, ultra-high-Q toroid microcavities with low repetition rates [Invited]. Photonics Res., 5, B54(2017).

    [5] L. Shi, X. Ming, K. Ma et al. Routing to mid-infrared microcomb via near-infrared direct pump. Opt. Express, 31, 20930(2023).

    [6] V. Vassiliev, M. Sumetsky. High Q-factor reconfigurable microresonators induced in side-coupled optical fibres. Light Sci. Appl., 12, 197(2023).

    [7] T. Qin, J. Yang, F. Zhang et al. Fast- and slow-light-enhanced light drag in a moving microcavity. Commun. Phys., 3, 118(2020).

    [8] S. Zhang, T. Bi, P. Del’Haye. Microresonator soliton frequency combs in the zero-dispersion regime. Laser Photonics Rev., 17, 2300075(2023).

    [9] C. Zhang, J. Wang, G. Kang et al. Soliton microcomb-assisted microring photonic thermometer with ultra-high resolution and broad range. Photonics Res., 11, A44(2023).

    [10] Y. Wang, W. Wang, Z. Lu et al. Hyperbolic resonant radiation of concomitant microcombs induced by cross-phase modulation. Photonics Res., 11, 1075(2023).

    [11] W. Cui, Z. Yi, X. Ma et al. High energy efficiency soliton microcomb generation in high coupling strength, large mode volume, and ultra-high-Q micro-cavity. Chin. Opt. Lett., 21, 101902(2023).

    [12] J. Hu, J. He, J. Liu et al. Reconfigurable radiofrequency filters based on versatile soliton microcombs. Nat. Commun., 11, 4377(2020).

    [13] R. Niu, S. Wan, J. Li et al. Fast spectroscopy based on a modulated soliton microcomb. IEEE Photonics J., 13, 1-4(2021).

    [14] P. Trocha, M. Karpov, D. Ganin et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [15] J. Feldmann, N. Youngblood, M. Karpov et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    [16] M. Kues, C. Reimer, P. Roztocki et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 546, 622-626(2017).

    [17] C. Lao, X. Jin, L. Chang et al. Quantum decoherence of dark pulses in optical microresonators. Nat. Commun., 14, 1802(2023).

    [18] Z. Shen, C. Dong. Phonon counting boosts hybrid quantum networks based on optomechanics. Sci. China Phys. Mech. Astron., 62, 107-108(2019).

    [19] Z. Yang, X. Tang, J. Zhang. Nonlinearity in optomechanical microresonators–phenomena, applications, and future. Fundam. Res.(2023).

    [20] B. Corcoran, M. Tan, X. Xu et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun., 11, 2568(2020).

    [21] W. Liang, D. Eliyahu, V. S. Ilchenko et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun., 6, 7957(2015).

    [22] P. Marin-Palomo, J. N. Kemal, M. Karpov et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274(2017).

    [23] Z. Xiao, T. Li, M. Cai et al. Near-zero-dispersion soliton and broadband modulational instability Kerr microcombs in anomalous dispersion. Light Sci. Appl., 12, 33(2023).

    [24] Z. L. Newman, V. Maurice, T. Drake et al. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680(2019).

    [25] R. Miao, K. Yin, C. Zhou et al. Dual-microcomb generation via a monochromatically pumped dual-mode microresonator. Photonics Res., 12, 163(2024).

    [26] H. Guo, M. Karpov, E. Lucas et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 13, 94-102(2017).

    [27] R. Miao, C. Zhang, X. I. N. Zheng et al. Repetition rate locked single-soliton microcomb generation via rapid frequency sweep and sideband thermal compensation. Photonics Res., 10, 1859(2022).

    [28] J. R. Stone, T. C. Briles, T. E. Drake et al. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys. Rev. Lett., 121, 063902(2018).

    [29] T. Wildi, V. Brasch, J. Liu et al. Thermally stable access to microresonator solitons via slow pump modulation. Opt. Lett., 44, 4447(2019).

    [30] N. G. Pavlov, S. Koptyaev, G. V. Lihachev et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nature Photonics, 12, 694(2018).

    [31] B. Shen, L. Chang, J. Liu et al. Integrated turnkey soliton microcombs. Nature, 582, 365(2020).

    [32] E. Barati, S. M. Jazayeri, M. Shayganmanesh et al. Cavity soliton formation in Kerr comb oscillators via input phase and amplitude modulation in the presence of high order dispersion. Opt. Commun., 554, 130180(2024).

    [33] Z. Lu, W. Wang, W. Zhang et al. Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator. AIP Adv., 9, 025314(2019).

    [34] I. N. Ngek, A. M. Dikandé. Soliton-comb generation in ring-shaped optical Kerr microresonators under thermal effects. Results Opt., 10, 100339(2023).

    [35] R. Niu, S. Wan, S.-M. Sun et al. Repetition rate tuning of soliton in microrod resonators(2018).

    [36] H. Zhou, Y. Geng, W. Cui et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl., 8, 50(2019).

    [37] U. Andral, R. Si Fodil, F. Amrani et al. Fiber laser mode locked through an evolutionary algorithm. Optica, 2, 275(2015).

    [38] M. Liu, R. Tang, A. P. Luo et al. Graphene-decorated microfiber knot as a broadband resonator for ultrahigh-repetition-rate pulse fiber lasers. Photonics Res., 6, C1(2018).

    [39] G. Pu, L. Yi, L. Zhang et al. Intelligent programmable mode-locked fiber laser with a human-like algorithm. Optica, 6, 362(2019).

    [40] G. B. Rieker, F. R. Giorgetta, W. C. Swann et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica, 1, 290(2014).

    [41] L. Zhou, Y. Shen, C. Xi et al. Computer-controlled microresonator soliton comb system automating soliton generation and expanding excursion bandwidth. Opt. Contin., 1, 161(2022).

    [42] X. Wang, P. Xie, W. Wang et al. Program-controlled single soliton microcomb source. Photonics Res., 9, 66(2021).

    [43] H. Zheng, W. Sun, X. Ding et al. Programmable access to microresonator solitons with modulational sideband heating. APL Photonics, 8, 126110(2023).

    [44] A. Bensemhoun, C. Gonzalez-Arciniegas, O. Pfister et al. Multipartite entanglement in bright frequency combs out of microresonators. Phys. Lett. A, 493, 129272(2024).

    [45] X. Yi, Q.-F. Yang, K. Y. Yang et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2, 1078(2015).

    [46] B. Shen, H. Shu, W. Xie et al. Harnessing microcomb-based parallel chaos for random number generation and optical decision making. Nat. Commun., 14, 4590(2023).

    [47] T. Carmon, L. Yang, K. J. Vahala. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 12, 4742(2004).

    [48] K. Liu, Z. Wang, S. Yao et al. Mitigating fast thermal instability by engineered laser sweep in AlN soliton microcomb generation. Photonics Res., 11, A10(2023).

    [49] Y. Geng, W. Cui, J. Sun et al. Enhancing the long-term stability of dissipative Kerr soliton microcomb. Opt. Lett., 45, 5073(2020).

    Chao Zhou, Ke Yin, Runlin Miao, Sirui Kong, Wei Dong, Tian Jiang, "Continuous and deterministic generation of chip-based frequency combs with a computer program," Chin. Opt. Lett. 22, 111302 (2024)
    Download Citation