• Chinese Physics B
  • Vol. 29, Issue 8, (2020)
Zhi-Yong Tan1、2, Wen-Jian Wan1, and Jun-Cheng Cao1、2、†
Author Affiliations
  • 1Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-1056/aba945 Cite this Article
    Zhi-Yong Tan, Wen-Jian Wan, Jun-Cheng Cao. Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors[J]. Chinese Physics B, 2020, 29(8): Copy Citation Text show less
    Progress of the maximum operation temperature in pulse mode (red) and CW mode (blue).
    Fig. 1. Progress of the maximum operation temperature in pulse mode (red) and CW mode (blue).
    Schematic diagram of working principle of terahertz QCL.
    Fig. 2. Schematic diagram of working principle of terahertz QCL.
    Schematic diagram for (a) SI-SP and (b) MM waveguides.
    Fig. 3. Schematic diagram for (a) SI-SP and (b) MM waveguides.
    Schematic conduction band edge profile of a GaAs/AlGaAs terahertz QWP under zero (above) and finite (below) bias.
    Fig. 4. Schematic conduction band edge profile of a GaAs/AlGaAs terahertz QWP under zero (above) and finite (below) bias.
    The comparison of the emission spectra of five THz QCLs and the photocurrent spectrum of a THz QWP.
    Fig. 5. The comparison of the emission spectra of five THz QCLs and the photocurrent spectrum of a THz QWP.
    The imaging, positioning, and spectral analysis process of hazardous substances.
    Fig. 6. The imaging, positioning, and spectral analysis process of hazardous substances.
    YearProgressValuesRef.
    2002the first terahertz QCL with chirped superlattice active region4.4 THz[1]
    2003the first bound-to-continuum structure3.4 THz[4]
    2003the first resonant-phonon-assisted structure3.4 THz[4]
    2004the first hybrid ‘interlaced’ design3.75 THz[4]
    2006minimum operating frequency1.2 THz[4]
    2012maximum operating frequency5.2 THz[4]
    2014maximum CW operating temperature129 K/–144°C[12]
    2016maximum CW power230 mW[13]
    2017maximum pulse power2.4 W[11]
    2019maximum pulse operating temperature210.5 K/–62.5°C[9]
    2017minimum divergence angle1.8°[8]
    Table 1. The progress of GaAs/AlGaAs-based terahertz QCLs.
    Radiation typeOutput power levelRef.
    terahertz QCL> 2 W in pulse mode[11]
    > 200 mW in CW mode[13]
    CO2 laser pumped terahertz gas laser> 100 mW in CW mode[3]
    free electron laser10 W (average power)[3]
    Gobar (thermal source)μ W in terahertz range[3]
    Gobar (thermal source)μ W in terahertz range[3]
    photoconductive antenna100 μ W (average power)[3]
    optical difference frequency100 μ W (average power)[3]
    Table 2. Comparison of radiation power of terahertz sources.
    YearProgressValuesRef.
    2004the first terahertz QWP7.1 THz2
    2009precise design of device structure3.2 THz/5.4 THz79
    2013microcavity coupled terahertz QWP5.4 THz81
    2014grating coupled terahertz QWP5.85 THz91
    2015antenna coupled terahertz QWP5.0 THz92
    2015the first two-photon terahertz QWP6.0 THz84
    2017the first two-color terahertz QWP3.4 THz93
    2018broadband bias-tunable terahertz QWP4.5 THz–6.5 THz94
    2019plasmon resonant terahertz QWP6.5 THz95
    Table 3. The progress of GaAs/AlGaAs-based terahertz QWPs.
    Zhi-Yong Tan, Wen-Jian Wan, Jun-Cheng Cao. Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors[J]. Chinese Physics B, 2020, 29(8):
    Download Citation