[1] CHONG Z Z, TOR S B, LOH N H, et al.. Acoustofluidic control of bubble size in microfluidic flow-focusing configuration [J]. Lab on a Chip, 2015, 15(4): 996-999.
[2] ZHANG L, YU X, YOU S, et al.. Highly sensitive microfluidic flow sensor based on aligned piezoelectric poly(vinylidene fluoride-trifluoroethylene) nanofibers [J]. Applied Physics Letters, 2015, 107(24): 242901.
[3] MORINI G L, YANG Y, CHALABI H, et al.. A critical review of the measurement techniques for the analysis of gas microflows through microchannels [J]. Experimental Thermal and Fluid Science, 2011, 35(6): 849-865.
[4] SCHULER G A, WOKAUN A, BCHI F N. Local online gas analysis in PEFC using tracer gas concepts [J]. Journal of Power Sources, 2010, 195(6): 1647-1656.
[5] KHADEM M, SHAMS M, HOSSAINPOUR S. Numerical simulation of roughness effects on flow and heat transfer in microchannels at slip flow regime [J]. International Communications in Heat and Mass Transfer, 2009, 36(1): 69-77.
[6] ZHANG L, YU X, YOU S, et al.. Highly sensitive microfluidic flow sensor based on aligned piezoelectric poly(vinylidene fluoride-trifluoroethylene) nanofibers [J]. Applied Physics Letters, 2015, 107(24): 242901.
[7] AGRAWAL A. A comprehensive review on gas flow in microchannels [J]. International Journal of Micro-Nano Scale Transport, 2011, 2(1): 1-40.
[8] HO C M, TAI Y C. Micro-electro-mechanical-systems(MEMS) and fluid flows [J]. Annual Review of Fluid Mechanics, 1998, 30(1): 579-612.
[9] ZHANG Z, ZHANG H, YE H. Pressure-driven flow in parallel-plate nanochannels [J]. Applied Physics Letters, 2009, 95(15): 154101.
[10] WERELEY S T, MEINHART C D. Recent advances in micro-particle image velocimetry [J]. Annual Review of Fluid Mechanics, 2010, 42: 557-576.
[11] NGUYEN N. Micromachined flow sensors [J]. Flow Measurement and Instrumentation, 1997, 8(1): 7-16.
[12] LNGE K, RAPP B E, RAPP M. Surface acoustic wave biosensors: a review [J]. Analytical and Bioanalytical Chemistry, 2008, 391(5): 1509-1519.
[13] WANG Y H, CHEN C P, CHANG C M, et al.. MEMS-based gas flow sensors [J]. Microfluidics and Nanofluidics, 2009, 6(3): 333-346.
[14] MATSUDA Y, MISAKI R, YAMAGUCHI H, et al.. Pressure-sensitive channel chip for visualization measurement of micro gas flows [J]. Microfluidics and Nanofluidics, 2011, 11(4): 507-510.
[15] WU C H, KANG D, CHEN P H, et al.. MEMS thermal flow sensors [J]. Sensors and Actuators A: Physical, 2016, 241: 135-144.
[16] QIAN M, NIU L, WANG Y, et al.. Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry(micro-EPIV) [J]. Physics in Medicine and Biology, 2010, 55(20): 6069.
[17] LUCCHETTA D E, VITA F, FRANCESCANGELI D, et al.. Optical measurement of flow rate in a microfluidic channel [J]. Microfluidics and Nanofluidics, 2016, 20(1).
[18] VILARES R, HUNTER C, UGARTE I, et al.. Fabrication and testing of a SU-8 thermal flow sensor [J]. Sensors and Actuators B: Chemical, 2010, 147(2): 411-417.
[19] KUO J T, YU L, MENG E. Micromachined thermal flow sensors [J]. Micromachines, 2012, 3(3): 550-573.
[20] WU Y, DE LABACHELERIE M, BASTIEN F. Investigations on excitation and detection methods for Lamb wave sensors [J]. Sensors and Actuators A: Physical, 2002, 100(2): 214-222.
[21] JIA H, DUHAMEL R, MANCEAU J F, et al.. Improvement of Lamb waves sensors: Temperature sensitivity compensation [J]. Sensors and Actuators A: Physical, 2005, 121(2): 321-326.
[22] LI F, MANCEAU J F, WU Y, et al.. Measurements of evanescent wave in a sandwich Lamb wave sensor [J]. Applied Physics Letters, 2008, 93(17): 174101.
[23] LI F, WU Y, MANCEAU J F, et al.. Temperature compensation of lamb wave sensor by combined antisymmetric mode and symmetric mode [J]. Applied Physics Letters, 2008, 92(7): 4101.
[25] ZHOU L, MANCEAU J F O, BASTIEN F O. Influence of gases on Lamb waves propagations in resonator [J]. Applied Physics Letters, 2009, 95(22): 223505.
[26] ZHOU L, WU Y, XUAN M, et al.. A multi-parameter decoupling method with a Lamb wave sensor for improving the selectivity of label-free liquid detection [J]. Sensors(Basel), 2012, 12(8): 10369-80.
[27] MIREA T, YANTCHEV V. Influence of liquid properties on the performance of S0-mode Lamb wave sensors: A theoretical analysis [J]. Sensors and Actuators B: Chemical, 2015, 208: 212-219.
[28] MIREA T, YANTCHEV V, OLIVARES J, et al.. Influence of liquid properties on the performance of S0-mode Lamb wave sensors Ⅱ: Experimental validation [J]. Sensors and Actuators B: Chemical, 2016, 229: 331-337.
[29] WILLBERG C, DUCZEK S, VIVAR-PEREZ J M, et al.. Simulation methods for guided wave-based structural health monitoring: a review [J]. Applied Mechanics Reviews, 2015, 67(1): 010803.
[30] MORONEY R, WHITE R, HOWE R. Microtransport induced by ultrasonic Lamb waves [J]. Applied Physics Letters, 1991, 59(7): 774-776.
[31] NGUYEN N, WHITE R. Design and optimization of an ultrasonic flexural plate wave micropump using numerical simulation [J]. Sensors and Actuators A: Physical, 1999, 77(3): 229-236.
[32] SAYAR E, FAROUK B. Acoustically generated flows in microchannel flexural plate wave sensors: Effects of compressibility [J]. Sensors and Actuators A: Physical, 2011, 171(2): 317-323.
[33] ZHOU L, MANCEAU J F, BASTIEN F. Interaction between gas flow and a Lamb waves based microsensor [J]. Sensors and Actuators A: Physical, 2012, 181: 1-5.
[34] OSBORNE M, HART S. Transmission, reflection, and guiding of an exponential pulse by a steel plate in water. I. Theory [J]. The Journal of the Acoustical Society of America, 1945, 17(1): 1-18.