• Chinese Journal of Lasers
  • Vol. 42, Issue 11, 1103005 (2015)
Wang Liang1、2、*, Hu Yong1、2, Song Shiying1、2, Lai Sanpin1、2, and Yao Jianhua1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/cjl201542.1103005 Cite this Article Set citation alerts
    Wang Liang, Hu Yong, Song Shiying, Lai Sanpin, Yao Jianhua. Suppression Effect of a Steady Magnetic Field on Surface Undulation During Laser Remelting[J]. Chinese Journal of Lasers, 2015, 42(11): 1103005 Copy Citation Text show less
    References

    [1] Li Meiyan, Wang Yong, Han Bin, et al.. Microstructure and corrosion resistance of laser surface melting modified layer on high chrome steel[J]. Materials Protecition, 2010, 43(3): 61-65.

    [2] Shi Hualiang, Li Jiqiang, Jia Zhixin, et al.. Microstructure and properties of SKD61 die steel strengthened by biomimetic laser-remelting [J]. Materials for mechanical engineering, 2014, 38(8): 39-43.

    [3] Gong Renzheng, Fan Xiangfang, Hu wei, et al.. Influence of laser melting on microstructure and mechanical properties of high velocity oxy-fuel sprayed cemented carbide coatings[J]. Hot Working Technology, 2015, 40(4): 81-84.

    [4] Wang C, Zhou H, Liang N, et al.. Mechanical properties of several laser remelting processed steels with different unit spacings[J]. Applied Surface Science. 2014, 313: 333-340.

    [5] Deng Meng, Wang Yiqiang, Gu Yan, et al.. Microstructure and wear behavior of laser hardened gray cast iron guideway[J]. Chinese J Lasers, 2014, 41(4): 0403009.

    [6] Wang Zhitai, Lin Xin, Cao Yongqing, et al.. External cooling condition effects on formation of anomalous eutectic in Ni-Sn alloy by laser remelting[J]. Chinese J Lasers, 2014, 41(12): 1203006.

    [7] Yi Peng, Xu Pengyun, Yin Keping, et al.. Laser thermo-repairing process modeling and thermal response analysison gray cast iron surface [J]. Chinese J Lasers, 2013, 40(3): 0303007.

    [8] Zhang Z, Lin P, Cong D, et al.. The characteristics of treated zone processed by pulsed Nd-YAG laser surface remelting on hot work steel [J]. Optics & Laser Technology, 2014, 64: 227-234.

    [9] Chikarakara E, Naher S, Brabazon D. Process mapping of laser surface modification of AISI 316L stainless steel for biomedical applications [J]. Applied Physics a-Materials Science & Processing, 2010, 101(2): 367-371.

    [10] Liu Hongxi, Cai Chuanxiong, Jiang Yehua, et al.. Influence of alternative magnetic field on macro morpholoy and microstructure of laser cladding Fe-based composite coating[J]. Optics and Precision engineering, 2012, 20(11): 2402-2410.

    [11] Qin Lanyun, Yang Guang, Bian Hongyou, et al.. Experimental study on electromagnetic stirring laser metal deposition titanium alloy[J]. Chinese J Lasers, 2014, 41(3): 0303004.

    [12] Wang Wei, Li Qi, Yang Guang, et al.. Numerical simulation of electromagnetic flow, temperature field and flow field in laser molten pool with electromagnetic stirring[J]. Chinese J Lasers, 2015, 42(2): 0202007.

    [13] Gatzen M. Influence of low-frequency magnetic fields during laser beam welding of aluminium with filler wire[J]. Physics Procedia, 2012, 39: 56-66.

    [14] Gatzen M, Tang Z. CFD-based model for melt flow in laser beam welding of aluminium with coaxial magnetic field[J]. Physics Procedia, 2010, 5: 317-326.

    [15] Bachmann M, Avilov V, Gumenyuk A, et al.. About the influence of a steady magnetic field on weld pool dynamics in partial penetration high power laser beam welding of thick aluminium parts[J]. International Journal of Heat and Mass Transfer, 2013, 60: 309-321.

    [16] Bachmann M, Avilov V, Gumenyuk A, et al.. Experimental and numerical investigation of an electromagnetic weld pool support system for high power laser beam welding of austenitic stainless steel[J]. Journal of Materials Processing Technology, 2014, 214(3): 578-91.

    [17] Hu Yong, Chen Zhijun, Wang Liang, et al.. Numerical simulation of the static magnetic field regulation of the laser molten pool heat transfer and flow behavior[J]. Applied Laser, 2014, 34(6): 508-512.

    [18] Liu Huilin, Lei Yuxia, He Jiajian, et al.. Research status of laser surface melting technology and itsnumerical simulation[J]. Ordnance Material Science and Engineering, 2013, 36(4): 86-91.

    [19] Yi Peng, Liu Yancong, Shi Yongjun, et al.. Numerical simulation of surface iron laser melting behavior and temperature distribution[J]. Transactions of The China Welding Institution, 2011, 32(8): 81-84.

    [20] Han Tao, Wang Yong. FEM simulation of laser melting of CK45 steel[J]. Hot Working Technology, 2007, 36(16): 80-83.

    [21] Brent A D, Voller V R, Reid K J. Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal[J]. Numerical Heat Transfer Part B-fundamentals, 1988, 13(3): 297-318.

    CLP Journals

    [1] Yang Guang, Zhao Endi, Qin Lanyun, Li Changfu, Wang Wei. Effect of electromagnetic stirring on melt flow velocity of laser melt pool and solidification structure[J]. Infrared and Laser Engineering, 2017, 46(9): 906006

    [2] Zhang Xun, Li Ruoyang, Zhao Zeyang, Mi Gaoyang, Wang Chunming, Hu Xiyuan. Influence of External Longitudinal Magnetic Field on Weld Joint Morphology and Microstructure in Laser-Metal Inert Gas Hybrid Welding[J]. Chinese Journal of Lasers, 2017, 44(8): 802008

    [3] Song Shiying, Wang Liang, Hu Yong, Yao Jianhua. Graded Coating Produced by Laser Melt Injection Under Steady Magnetic Field[J]. Chinese Journal of Lasers, 2016, 43(5): 503005

    Wang Liang, Hu Yong, Song Shiying, Lai Sanpin, Yao Jianhua. Suppression Effect of a Steady Magnetic Field on Surface Undulation During Laser Remelting[J]. Chinese Journal of Lasers, 2015, 42(11): 1103005
    Download Citation