• Optics and Precision Engineering
  • Vol. 27, Issue 11, 2354 (2019)
LI Qiang1, ZHANG Bao-hui1, LI Hui-feng1, WANG Qian1, and WANG Chao2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/ope.20192711.2354 Cite this Article
    LI Qiang, ZHANG Bao-hui, LI Hui-feng, WANG Qian, WANG Chao. Estimation of hydrazine propellant leakage for LEO satellite[J]. Optics and Precision Engineering, 2019, 27(11): 2354 Copy Citation Text show less
    References

    [1] SKUHERSKY M, GO T, KIRK D R, et al.. Comparison of propellant settling approaches for on-orbit propellant depots during propellant transfer maneuvers[C]. AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019 AIAA 2019-1371: 1-16.

    [2] GAJJAR P, MALHOTRA V. Advanced upper stage energetic propellants[C].2018 IEEE Aerospace Conference, March 3-10, 2018. Big Sky, MT. New York, USA: IEEE, 2018: 1-12.

    [3] BARBER T J. Final cassini propulsion system in-flight characterization[C].2018 Joint Propulsion Conference, Cincinnati, Ohio. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018, AIAA 2018-4546: 1-81.

    [4] LEVERONE F, CERVONE A, GILL E. Cost analysis of solar thermal propulsion systems for microsatellite applications[J]. Acta Astronautica, 2019, 155: 90-110.

    [5] HOPKINS J R, MICCI M M, BILEN S G, et al.. Direct thrust measurements of an 8-GHz microwave electrothermal thruster[J]. IEEE Transactions on Plasma Science, 2018, 46(6): 2009-2015.

    [6] VAIRAMANI M, DURAISAMY V V, KULKARNI M D, et al.. Stability analysis of a novel on-orbit propellant storage and transfer system[C]. 2018 Space Flight Mechanics Meeting, Kissimmee, Florida. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018 AIAA 2018-0210: 1-15.

    [7] GREGORY T C, GRAHAM K W, MARCOS R E, et al.. Restore-L propellant transfer subsystem progress within SSPD[C]. AIAA Propulsion and Energy Forum, Cincinnati, Ohio, 2018, AIAA 2018-4942: 1-17.

    [8] CONOMOS H A, ALONGI C G, MOORE J, et al.. Development of 10 inch diameter titanium rolling metal diaphragm tank for green propellant[C].53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017-4915: 1-10.

    [9] NAUMANN K W, PINTO P C. Green, controllable, safe, affordable and mature gelled propellant rocket motor technology for space and sub-orbital launchers[C]. 2018 Joint Propulsion Conference, Cincinnati, Ohio. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018-4854: 1-13.

    [10] BOURDELLE A, BURLION L, BIANNIC J M, et al.. Correction: towards new controller design oriented models of propellant sloshing in observation spacecraft[C]. AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019-0115: 1-12.

    [11] HARI M, SARIGUL-KLIJN N. Predicting sloshing motion in flexible propellant tanks using three-dimensional computational simulation and experimental validation[C]. AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019-0204: 1-10.

    [12] OTTANDER J A, HALL R A, POWERS J F. Practical methodology for the inclusion of nonlinear slosh damping in the stability analysis of liquid-propelled space vehicles[C].2018 AIAA Guidance, Navigation, and Control Conference, Kissimmee, Florida. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018-2097: 1-13.

    [13] DONO A, PLICE L, MUETING J, et al.. Propulsion trade studies for spacecraft swarm mission design[C].2018 IEEE Aerospace Conference, March 3-10, 2018. Big Sky, MT. New York, USA: IEEE, 2018: 1-12.

    [14] XAPSOS M. A brief history of space climatology: from the big bang to the present[J]. IEEE Transactions on Nuclear Science, 2019, 66(1): 17-37.

    [15] GRANT B, LUKE S. A new approach to radiation tolerance for high-orbit and interplanetary smallsat missions[C]. 32nd Annual AIAA/USU Conference on Small Satellites, Logan, Utah, 2018, SSC18-WKV-05: 1-12.

    [16] XU F X. Technique of successful rescue of FY-1B meterological satellite by using the geomagnetic field and the gravitational field[J]. Journal of Astronautics, 2001, 22(2): 1-11, 17. (in Chinese)

    [17] PENG R J, MA X Y, ZHENG K Y, et al.. On-orbit fault repair and recovery of a low orbit satellite[J]. Spacecraft Engineering, 2008, 17(1): 24-29. (in Chinese)

    [18] SCHNEIDER P, ENDICTER J, WORK K, et al.. GOES-12 B-string thruster leak - anomaly response, recovery, and maintenance[C].SpaceOps 2010 Conference, Huntsville, Alabama. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010-2140: 1-11.

    [19] VAREHA A. The ISS 2B PVTCS ammonia leak: an operational history[C].SpaceOps 2014 Conference, Pasadena, CA. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014-1664: 1-11.

    [20] CHRISTIAN B, FLAVIO M, MILAN K, et al.. Propellant gauging experience with meteosat second generation S/C fleet[C]. Space Ops. 2018 Conference, Marseille, France, 2018, AIAA 2018-2319: 1-11.

    [21] CARLTON A, MORGAN R, LOHMEYER W, et al.. Telemetry fault-detection algorithms: applications for spacecraft monitoring and space environment sensing[J]. Journal of Aerospace Information Systems, 2018, 15(5): 239-252.

    [22] MLLER S, GERNDT A, NOLL T. Synthesizing failure detection, isolation, and recovery strategies from nondeterministic dynamic fault trees[J]. Journal of Aerospace Information Systems, 2019, 16(2): 52-60.

    [23] BUSSY-VIRAT C D, RIDLEY A J, GETCHIUS J W. Effects of uncertainties in the atmospheric density on the probability of collision between space objects[J]. Space Weather, 2018, 16(5): 519-537.

    [24] HEJDUK M D, SNOW D E. The effect of neutral density estimation errors on satellite conjunction serious event rates[J]. Space Weather, 2018, 16(7): 849-869.

    [25] LIM J W M, HUANG S Y, SUN Y F, et al.. Precise calibration of propellant flow and forces in specialized electric propulsion test system[J]. IEEE Transactions on Plasma Science, 2018, 46(2): 338-344.

    [26] LI Q, LI H F, YUAN Y, et al.. Estimation for cold gas propellant leakage on orbit[J]. Journal of Propulsion Technology, 2018, 39(5): 1187-1193. (in Chinese)

    [27] ZONG Y H, YU Y B, DI J J, et al.. High precision time correction and calculation method of star camera[J]. Spacecraft Engineering, 2019, 28(2): 36-42. (in Chinese)

    [28] VANHOVE E, ROUSSEL J F, REMAURY S, et al.. Aging of thermal coatings on low earth orbit: in-flight measurements and modeling[J]. Journal of Spacecraft and Rockets, 2016, 53(6): 1141-1145.

    [29] ZHOU X, ZHANG Y W, YU L, et al.. Experimental study of the long-term compatibility of superalloy GH4169 with dinitrogen tetroxide[J]. Spacecraft Environment Engineering, 2019, 36(2): 161-164. (in Chinese)

    [30] DANIELS C C, BRAUN M J, ORAVEC H A, et al.. Leak-rate-quantification method for gas pressure seals with controlled pressure differential[J]. Journal of Spacecraft and Rockets, 2017, 54(6): 1228-1234.

    [31] TAYLOR S C, MATHER J, DANIELS C C. Investigation of the impact of surface blending and ultraviolet radiation exposure on elastomer seal leak rate performance for space seal applications[C].7th AIAA Atmospheric and Space Environments Conference, Dallas, TX. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015-3322: 1-11.

    [32] DANIELS C, WASOWSKI J, PANICKAR M, et al.. Leak rate performance of three silicone elastomer compounds after ground-simulated and on-orbit environment exposures[C].3rd AIAA Atmospheric Space Environments Conference, Honolulu, Hawaii. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011-3823: 1-11.

    [33] PENNEY N, WASOWSKI J, DANIELS C. Temperature and atomic oxygen effects on helium leak rates of a candidate main interface seal[C].46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010-6986: 1-7.

    [34] JIA SH J, MING ZH P, LIU J Y, et al.. Analysis on the thermal control problems of space booster sub-system in orbit[J].Spacecraft Environment Engineering,2019,36(2): 165-170. (in Chinese)

    [35] IOVINE J. International space station passive thermal control system top ten lessons-learned[C]. 48th International Conference on Environmental Systems, Albuquerque, New Mexico, 2018, ICES-2018-004: 1-8.

    [36] CHAMBLISS J. The ISS TCS system manager experience[C]. 48th International Conference on Environmental Systems, Albuquerque, New Mexico, 2018, ICES-2018-297: 1-16.

    [37] BUHL N, ALTENBURG M, MANNS M. Sentinel-2A/B thermal design-lessons learnt from TBTV, LEOP and IOC[C]. 48th International Conference on Environmental Systems, Albuquerque, New Mexico, 2018, ICES-2018-148: 1-16.

    [38] YANG B H. Exploration of CASC′s commercial space[J]. Aerospace China, 2018, 19(1): 27-30.

    [39] WANG S, JIN R, ZHU J D. SuperView-1 - China′s first commercial remote sensing satellite constellation with a high resolution of 0.5 m[J]. Aerospace China, 2018, 19(1): 31-38.

    [40] YOU ZH, SHI SH, ZHAO K CH, et al.. Key technologies for research & development of nanosatellite[J]. Spacecraft Engineering, 2019, 28(1): 1-9. (in Chinese)

    [41] BAI ZH G. Development achievements and prospects of China modern small satellite[J]. Spacecraft Engineering, 2019, 28(2): 1-8. (in Chinese)

    LI Qiang, ZHANG Bao-hui, LI Hui-feng, WANG Qian, WANG Chao. Estimation of hydrazine propellant leakage for LEO satellite[J]. Optics and Precision Engineering, 2019, 27(11): 2354
    Download Citation