Fig. 1. Detection network framework
Fig. 2. Vote model network
Fig. 3. Structure of FCN network
Fig. 4. Relationship between three detection boxes and target boxes
Fig. 5. Target box and detection box with angle deviation
Fig. 6. 3D detection AP and recall curves for cars, pedestrians and cyclists
Fig. 7. Visualization results of cars
Fig. 8. Visualization results of pedestrians and cyclists
算法1:N3D_DIOU_loss |
---|
输入:检测框 Bp、目标框Bg 、预测中心 Cp 和目标框中心 Cg: Bp=(,,,,,) Bg=(,,,,,) Cp=(,,) Cg=(,,) | 输出:由于目标框与检测框事先与坐标轴对齐,可以确保:>,>,>,>,>,> 1. 计算Bg的体积:Vg=(-)·(-)·(-) 2. 计算Bp的体积:Vp=(-)·(-)·(-) 3. 计算两框交集的体积(Vi): =max(,),=min(,) =max(,),=min(,) =max(,),=min(,) If >,>,>:
Otherwise: Vi=0 4. 计算两框最小包围边界框的体积(Vc): =min(,),=max(,) =min(,),=max(,) =min(,),=max(,) 5. 计算目标框和检测框的中心之间的距离ρ,以及最小边界框的对角线距离c: ρ²=(-)²+(-)²+(-)² c²=(-)²+(-)²+(-)² 6. IOU_3D =, 其中 Vu=Vp+Vg-Vi 7. 8. DIOU_3D_loss=1 - DIOU_3D 9. N3D_DIOU_loss= ω3·DIOU_3D_loss+ω4·L1_angle_loss (ω3和ω4为权重系数,本文中分别设为0.5与0.03,L1_angle_loss是L1损失函数,用于监督角度偏差。) |
|
Table 1. Algorithm 1 Pseudo Code of N3D_DIOU_loss
算法 | 汽车 | 行人 | 骑车者 |
---|
简单 中等 困难 | 简单 中等 困难 | 简单 中等 困难 |
---|
MV3D[1] ContFusion[28] VoxelNet[15] F-PointNet[31] F-ConvNet[24] IPOD[29] PointPillars[30] | 71.29 62.68 56.56 86.32 73.25 67.81 81.97 65.46 62.85 83.76 70.92 63.65 89.02 78.80 77.09 84.10 76.40 75.30 79.05 74.99 68.30 | N/A N/A N/A N/A N/A N/A 57.86 53.42 48.87 70.00 61.32 53.59 N/A N/A N/A 69.60 62.30 54.60 52.08 43.53 41.49 | N/A N/A N/A N/A N/A N/A 67.17 47.65 45.11 77.15 56.49 53.37 N/A N/A N/A 81.90 57.10 54.60 75.78 59.07 52.92 | 本文算法 | 89.73 79.43 77.79 | 70.37 58.70 51.75 | 80.88 60.4356.93 |
|
Table 1. 3D detection AP (%) of cars, pedestrians and cyclists on KITTI val set
算法 | 汽车 | 行人 | 骑车者 |
---|
简单 中等 困难 | 简单 中等 困难 | 简单 中等 困难 |
---|
MV3D[1] ContFusion[28] VoxelNet[15] F-PointNet[31] F-ConvNet[24] IPOD[29] PointPillars[30] | 86.55 78.10 76.67 95.44 87.34 82.43 89.60 84.81 78.57 88.16 84.92 76.44 90.23 88.79 86.84 88.30 86.40 84.60 88.35 86.10 79.83 | N/A N/A N/A N/A N/A N/A 65.95 61.05 56.98 72.38 66.39 59.57 N/A N/A N/A 72.40 67.8059.70 58.66 50.23 47.19 | N/A N/A N/A N/A N/A N/A 74.41 52.18 50.49 81.82 60.03 56.32 N/A N/A N/A 84.30 61.80 57.70 79.14 62.25 56.00 | 本文算法 | 97.51 89.0586.99 | 72.59 63.57 59.21 | 86.21 65.6660.58 |
|
Table 2. BEV detection AP(%) of cars, pedestrians and cyclists on KITTI val set
| 算法 | 检测精度 |
---|
简单 中等 困难 |
---|
3D | F-ConvNet F-ConvNet+投票模型 F-ConvNet+N3D-DIOU_loss F-ConvNet+投票模型+N3D-DIOU_loss | 89.02 78.80 77.09 89.23 79.06 77.42 89.34 79.21 77.63 89.73 79.43 77.79 | BEV | F-ConvNet F-ConvNet+投票模型 F-ConvNet+N3D-DIOU_loss F-ConvNet+投票模型+N3D-DIOU_loss | 90.23 88.79 86.86 90.53 89.13 86.92 90.31 88.98 86.63 97.51 89.05 86.99 |
|
Table 3. 3D and BEV detection performance
| 算法 | 检测精度 |
---|
简单 中等 困难 |
---|
无 微调 | F-ConvNet F-ConvNet+投票模型 F-ConvNet+N3D-DIOU_loss F-ConvNet+投票模型+N3D-DIOU_loss | 86.51 76.57 68.17 87.73 77.00 68.42 88.06 77.49 68.76 88.47 77.83 69.04 | 参数 微调 | F-ConvNet F-ConvNet+投票模型 F-ConvNet+N3D-DIOU_loss F-ConvNet+投票模型+N3D-DIOU_loss | 89.02 78.80 77.09 89.23 79.06 77.42 89.34 79.21 77.63 89.73 79.43 77.79 |
|
Table 4. Comparison of parameter tuning experiments