• Acta Photonica Sinica
  • Vol. 50, Issue 10, 1016002 (2021)
Xue DONG1, Peng CHENG1, Peiyao GUO1, Guohua LIU2..., Yiqun LI2, Zhongbin WU1,*, Yonghua CHEN2,* and Wei HUANG1,2,*|Show fewer author(s)
Author Affiliations
  • 1Institute of Flexible Electronics(IFE),Northwestern Polytechnical University,Xi'an 710072,China
  • 2Institution of Advanced Materials(IAM),Nanjing Tech University,Nanjing 210037,China
  • show less
    DOI: 10.3788/gzxb20215010.1016002 Cite this Article
    Xue DONG, Peng CHENG, Peiyao GUO, Guohua LIU, Yiqun LI, Zhongbin WU, Yonghua CHEN, Wei HUANG. Ion Migration in Perovskite Field-effect Transistors(Invited)[J]. Acta Photonica Sinica, 2021, 50(10): 1016002 Copy Citation Text show less
    References

    [1] Xiuzhi DUAN, Zhihao HE, Yang YANG et al. Hopping conductance and macroscopic quantum tunneling effect in three dimensional Pbx(SiO2)1-x nanogranular films. Physical Review B, 99, 9(2019).

    [2] P K NAYAK, S MAHESH, H J SNAITH et al. Photovoltaic solar cell technologies: analysing the state of the art. Nature Reviews Materials, 4, 269-285(2019).

    [3] Baodan ZHAO, Sai BAI, V KIM et al. High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nature Photonics, 12, 783-789(2018).

    [4] Xu JING, Y ILLARIONOV, E YALON et al. Engineering field effect transistors with 2D semiconducting channels: status and prospects. Advanced Functional Materials, 30, 21(2020).

    [5] W LEE, D KIM, J RIVNAY et al. Integration of organic electrochemical and field-effect transistors for ultraflexible, high temporal resolution electrophysiology arrays. Advanced Materials, 28, 9722-9728(2016).

    [6] Bingzhe XU, Minshan ZHU, Wencong ZHANG et al. Field-effect transistors: ultrathin mxene-micropattern-based field-effect transistor for probing neural activity. Advanced Materials, 28, 3411(2016).

    [7] S D STRANKS, H J SNAITH. Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotechnology, 10, 391-402(2015).

    [8] S P SENANAYAK, M ABDI-JALEBI, V S KAMBOJ et al. A general approach for hysteresis-free, operationally stable metal halide perovskite field-effect transistors. Science Advances, 6, 12(2020).

    [9] H P KIM, M VASILOPOULOU, H ULLAH et al. A hysteresis-free perovskite transistor with exceptional stability through molecular cross-linking and amine-based surface passivation. Nanoscale, 12, 7641-7650(2020).

    [10] S BALDERSTON, J J TAULBEE, E CELAYA et al. Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor. Nature Biomedical Engineering, 5, 713-725(2021).

    [11] S D STRANKS, G E EPERON, G GRANCINI et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342, 341-344(2013).

    [12] A MIYATA, A MITIOGLU, P PLOCHOCKA et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nature Physics, 11, 582-587(2015).

    [13] Tianyi WANG, B DAIBER, J M FROST et al. Indirect to direct bandgap transition in methylammonium lead halide perovskite. Energy & Environmental Science, 10, 509-515(2017).

    [14] C EAMES, J M FROST, P R BARNES et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications, 6, 7497(2015).

    [15] Zhengguo XIAO, Yongbo YUAN, Yuchuan SHAO et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat Mater, 14, 193-198(2015).

    [16] B C O'REGAN, P R BARNES, Xiaoe LI et al. Optoelectronic studies of methylammonium lead iodide perovskite solar cells with mesoporous TiO2: separation of electronic and chemical charge storage, understanding two recombination lifetimes, and the evolution of band offsets during J-V hysteresis. Journal of the American Chemical Society, 137, 5087-5099(2015).

    [17] Cheng LI, S TSCHEUSCHNER, F PAULUS et al. Iodine migration and its effect on hysteresis in perovskite solar cells. Advanced Materials, 28, 2446-2454(2016).

    [18] Wenke ZHOU, Juan GU, Zhiqian YANG et al. Basis and effects of ion migration on photovoltaic performance of perovskite solar cells. Journal of Physics D: Applied Physics, 54, 063001(2021).

    [19] L MCGOVERN, I KOSCHANY, G GRIMALDI et al. Grain size influences activation energy and migration pathways in MAPbBr3 perovskite solar cells. Journal of Physical Chemistry Letters, 12, 2423-2428(2021).

    [20] Jingjing ZHAO, Yehao DENG, Haotong WEI et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Science Advances, 3, 8(2017).

    [21] Yao ZHAO, Wenke ZHOU, Zhengyuan HAN et al. Effects of ion migration and improvement strategies for the operational stability of perovskite solar cells. Physical Chemistry Chemical Physics, 23, 94-106(2021).

    [22] T LEIJTENS, E T HOKE, G GRANCINI et al. Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Advanced Energy Materials, 5, 1500962(2015).

    [23] G Y KIM, A SENOCRATE, T Y YANG et al. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nature Materials, 17, 445-449(2018).

    [24] Junzhan WANG, S P SENANAYAK, Jie LIU et al. Investigation of electrode electrochemical reactions in CH3NH3PbBr3 Perovskite single-crystal field-effect transistors. Advanced Materials, 31, e1902618(2019).

    [25] D CHEN, K P TAYLOR, Q HALL et al. The neuropeptides FLP-2 and PDF-1 act in concert to arouse caenorhabditis elegans locomotion. Genetics, 204, 1151-1159(2016).

    [26] C C STOUMPOS, C D MALLIAKAS, M G KANATZIDIS. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 52, 9019-9038(2013).

    [27] Dehui LI, H C CHENG, Yiliu WANG et al. The effect of thermal annealing on charge transport in organolead halide perovskite microplate field-effect transistors. Advanced Materials, 29, 1601959(2017).

    [28] M H FUTSCHER, J M LEE, L MCGOVERN et al. Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements. Materials Horizons, 6, 1497-1503(2019).

    [29] Yuchuan SHAO, Yanjun FANG, Tao LI et al. Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy & Environmental Science, 9, 1752-1759(2016).

    [30] H ZHU, A LIU, T ZOU et al. A Lewis base and boundary passivation bifunctional additive for high performance lead-free layered-perovskite transistors and phototransistors. Materials Today Energy, 21, 100722(2021).

    [31] S P SENANAYAK, Bingyan YANG, T H THOMAS et al. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Science Advances, 3, e1601935(2017).

    [32] E W G DIAU, E JOKAR, M RAMEEZ. Strategies to improve performance and stability for tin-based perovskite solar cells. ACS Energy Letters, 4, 1930-1937(2019).

    [33] Huanuan YAO, Faguang ZHOU, Zhizai LI et al. Strategies for improving the stability of tin-based perovskite (ASnX3) solar cells. Advanced Science, 7, 1903540(2020).

    [34] Wenfan YANG, F IGBARI, Yanhui LOU et al. Tin halide perovskites: progress and challenges. Advanced Energy Materials, 10, 1902584(2019).

    [35] Weijun KE, C C STOUMPOS, M G KANATZIDIS. "Unleaded" perovskites: status quo and future prospects of tin-based perovskite solar cells. Advanced Materials, 31, e1803230(2019).

    [36] Huihui ZHU, Ao LIU, K I SHIM et al. High-performance and reliable lead-free layered-perovskite transistors. Advanced Materials, 32, e2002717(2020).

    [37] Y REO, Huihui ZHU, J GO et al. Effect of monovalent metal iodide additives on the optoelectric properties of two-dimensional Sn-based perovskite films. Chemistry of Materials, 33, 2498-2505(2021).

    [38] H BOURARA, S HADJOUT, Z BENABDELGHANI et al. Miscibility and hydrogen bonding in blends of poly(4-vinylphenol)/poly(vinyl methyl ketone). Polymers, 6, 2752-2763(2014).

    [39] Fan ZHANG, Quan ZHANG, Xin LIU et al. Property modulation of two-dimensional lead-free perovskite thin films by aromatic polymer additives for performance enhancement of field-effect transistors. ACS Applied Materials & Interfaces, 13, 24272-24284(2021).

    [40] T H HAN, J W LEE, C CHOI et al. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nature Communications, 10, 520(2019).

    [41] Lijian ZUO, Hexia GUO, D W DEQUILETTES et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Science Advances, 3, 11(2017).

    [42] N K NOEL, A ABATE, S D STRANKS et al. Enhanced photoluminescence and solar cell performance via lewis base passivation of organic inorganic lead halide perovskites. Acs Nano, 8, 9815-9821(2014).

    [43] Yun LIN, Yang BAI, Yanjun FANG et al. Suppressed ion migration in low-dimensional perovskites. ACS Energy Letters, 2, 1571-1572(2017).

    [44] Fangyuan JIANG, J POTHOOF, F MUCKEL et al. Scanning kelvin probe microscopy reveals that ion motion varies with dimensionality in 2D halide perovskites. ACS Energy Letters, 6, 100-108(2020).

    [45] J CHO, J T DUBOSE, A N T LE et al. Suppressed halide ion migration in 2D lead halide perovskites. ACS Materials Letters, 2, 565-570(2020).

    [46] Xun XIAO, Jun DAI, Yanjun FANG et al. Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Letters, 3, 684-688(2018).

    [47] Shuyan SHAO, W TALSMA, M PITARO et al. Field‐effect transistors based on formamidinium tin triiodide perovskite. Advanced Functional Materials, 31, 2008478(2021).

    [48] Z HUANG, A H PROPPE, H TAN et al. Suppressed ion migration in reduced-dimensional perovskites improves operating stability. ACS Energy Letters, 4, 1521-1527(2019).

    [49] Jiangzhao CHEN, D LEE, N G PARK. Stabilizing the Ag electrode and reducing J-V hysteresis through suppression of iodide migration in perovskite solar cells. ACS Applied Materials & Interfaces, 9, 36338-36349(2017).

    [50] A A SUTANTO, N DRIGO, V I E QUELOZ et al. Dynamical evolution of the 2D/3D interface: a hidden driver behind perovskite solar cell instability. Journal of Materials Chemistry A, 8, 2343-2348(2020).

    [51] H KIM, J S KIM, J M HEO et al. Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot. Nature Communications, 11, 3378(2020).

    [52] M H FUTSCHER, M K GANGISHETTY, D N CONGREVE et al. Manganese doping stabilizes perovskite light-emitting diodes by reducing ion migration. ACS Applied Electronic Materials, 2, 1522-1528(2020).

    [53] Lu ZHANG, Yucheng LIU, Zhou YANG et al. Two dimensional metal halide perovskites: promising candidates for light-emitting diodes. Journal of Energy Chemistry, 37, 97-110(2019).

    [54] Xiaolei YANG, Xingwang ZHANG, Jinxiang DENG et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nature Communications, 9, 570(2018).

    [55] Qiuyu SHANG, Yunuan WANG, Yangguang ZHONG et al. Unveiling structurally engineered carrier dynamics in hybrid quasi-two-dimensional perovskite thin films toward controllable emission. Journal of Physical Chemistry Letters, 8, 4431-4438(2017).

    [56] Fengjing LIU, Liang WANG, Jiawei WANG et al. 2D ruddlesden–popper perovskite single crystal field‐effect transistors. Advanced Functional Materials, 31, 2005662(2020).

    [57] H TSAI, Wanyi NIE, J C BLANCON et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 536, 312-316(2016).

    [58] Bao XIAO, Qihao SUN, Fangbao WANG et al. Towards superior X-ray detection performance of two-dimensional halide perovskite crystals by adjusting the anisotropic transport behavior. Journal of Materials Chemistry A, 9, 13209-13219(2021).

    [59] Zhen LI, Mengjin YANG, J S PARK et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials, 28, 284-292(2015).

    [60] A R YUSOFF, H P KIM, Xiuling LI et al. Ambipolar triple cation perovskite field effect transistors and inverters. Advanced Materials, 29, 1602940(2017).

    [61] M SALIBA, T MATSUI, J Y SEO et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science, 9, 1989-1997(2016).

    [62] U ASCHAUER, R PFENNINGER, S M SELBACH et al. Strain-controlled oxygen vacancy formation and ordering in CaMnO3. Physical Review B, 88, 054111(2013).

    [63] M I SAIDAMINOV, J KIM, A JAIN et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nature Energy, 3, 648-654(2018).

    Xue DONG, Peng CHENG, Peiyao GUO, Guohua LIU, Yiqun LI, Zhongbin WU, Yonghua CHEN, Wei HUANG. Ion Migration in Perovskite Field-effect Transistors(Invited)[J]. Acta Photonica Sinica, 2021, 50(10): 1016002
    Download Citation