• Electronics Optics & Control
  • Vol. 32, Issue 4, 31 (2025)
ZHANG Shang, XIONG Zhongyue, and WANG Hengtao
Author Affiliations
  • College of Computer and Information Technology, China Three Gorges University, Yichang 443000, China
  • show less
    DOI: 10.3969/j.issn.1671-637x.2025.04.005 Cite this Article
    ZHANG Shang, XIONG Zhongyue, WANG Hengtao. An Improved YOLOv7-tiny Ship Recognition Algorithm Based on Channel Pruning[J]. Electronics Optics & Control, 2025, 32(4): 31 Copy Citation Text show less
    References

    [2] SHARIFZADEH F, AKBARIZADEH G, KAVIAN Y S. Ship classification in SAR images using a new hybrid CNMLP classifier[J]. Journal of the Indian Society of Remote Sensing, 2019, 47: 551-562.

    [3] SAMADI F, AKBARIZADEH G, KAABI H. Change detection in SAR images using deep belief network: a new training approach based on morphological images[J]. IET Image Processing, 2019, 13(12): 2255-2264.

    [4] ZALPOUR M, AKBARIZADEH G, ALAEI-SHEIN N. A new approach for oil tank detection using deep learning features with control false alarm rate in high-resolution satellite imagery[J]. International Journal of Remote Sensing, 2020, 41(6): 2239-2262.

    [5] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image-Net classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.

    [6] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Columbus: IEEE, 2014: 580-587.

    [7] GIRSHICK R. Fast R-CNN[C]//IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015: 1440-1448.

    [8] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.

    [9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas: IEEE, 2016: 779-788.

    [10] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[R]. Los Alamos: arXiv Preprint, 2016: arXiv: 1512. 02325.

    [11] CUI Z Y, LI Q, CAO Z J, et al. Dense attention pyramid networks for multi-scale ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8983-8997.

    [12] CHEN C, HE C, HU C H, et al. A deep neural network based on an attention mechanism for SAR ship detection in multiscale and complex scenarios[J]. IEEE Access, 2019, 7: 104848-104863.

    [13] CUI Z Y, WANG X Y, LIU N Y, et al. Ship detection in large-scale SAR images via spatial shuffle-group enhance attention[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 379-391.

    [14] WEI S J, SU H, MING J, et al. Precise and robust ship detection for high-resolution SAR imagery based on HR-SDNet[J]. Remote Sensing, 2020, 12(1): 167.

    [15] HOWARD A G, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 1314-1324.

    [17] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[R]. Los Alamos: arXiv Preprint, 2017: arXiv: 1704. 04861.

    [18] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Salt Lake City: IEEE, 2018: 4510-4520.

    [19] FANG G F, MA X Y, SONG M L, et al. DepGraph: towards any structural pruning[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 16091-16101.

    [20] WEI S J, ZENG X F, QU Q Z, et al. HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234-120254.

    ZHANG Shang, XIONG Zhongyue, WANG Hengtao. An Improved YOLOv7-tiny Ship Recognition Algorithm Based on Channel Pruning[J]. Electronics Optics & Control, 2025, 32(4): 31
    Download Citation