• Photonics Research
  • Vol. 6, Issue 8, 789 (2018)
Qiang Li1, Qiang Wu1,2,*, Yanan Li1, Chunling Zhang1..., Zixi Jia1, Jianghong Yao1,3, Jun Sun1,2 and Jingjun Xu1,2|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 3e-mail: yaojh@nankai.edu.cn
  • show less
    DOI: 10.1364/PRJ.6.000789 Cite this Article Set citation alerts
    Qiang Li, Qiang Wu, Yanan Li, Chunling Zhang, Zixi Jia, Jianghong Yao, Jun Sun, Jingjun Xu, "Femtosecond laser-induced periodic surface structures on lithium niobate crystal benefiting from sample heating," Photonics Res. 6, 789 (2018) Copy Citation Text show less
    References

    [1] K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, M. Obara. Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser. Appl. Phys. A, 69, S359-S366(1999).

    [2] T.-H. Her, R. J. Finlay, C. Wu, E. Mazur. Femtosecond laser-induced formation of spikes on silicon. Appl. Phys. A, 70, 383-385(2000).

    [3] H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, M. Obara. Ablation of polymer films by a femtosecond high‐peak‐power Ti:sapphire laser at 798  nm. Appl. Phys. Lett., 65, 1850-1852(1994).

    [4] Y. Dai, G. Wu, X. Lin, G. Ma, J. Qiu. Femtosecond laser induced rotated 3D self-organized nanograting in fused silica. Opt. Express, 20, 18072-18078(2012).

    [5] R. R. Gattass, E. Mazur. Femtosecond laser micromachining in transparent materials. Nat. Photonics, 2, 219-225(2008).

    [6] M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, S. Martinuzzi. Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication. Thin Solid Films, 516, 6791-6795(2008).

    [7] Q. Sun, F. Liang, R. Vallée, S. L. Chin. Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses. Opt. Lett., 33, 2713-2715(2008).

    [8] G. A. Torchia, C. Mendez, D. Jaque. Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals. Appl. Phys. B, 83, 559-563(2006).

    [9] A. Bouchier, G. Lucas-Leclin, P. Georges. Frequency doubling of an efficient continuous wave single-mode Yb-doped fiber laser at 978  nm in a periodically-poled MgO:LiNbO3 waveguide. Opt. Express, 13, 6974-6979(2005).

    [10] Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, J. Xu. Highly optical damage resistant crystal: zirconium-oxide-doped lithium niobate. Appl. Phys. Lett., 91, 081908(2007).

    [11] L. Razzari, P. Minzioni, I. Cristiani. Photorefractivity of Hafnium-doped congruent lithium-niobate crystals. Appl. Phys. Lett., 86, 131914(2005).

    [12] R. S. Weis, T. K. Gaylord. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A, 37, 191-203(1985).

    [13] P. Wang, J. Qi, Z. Liu, Y. Liao, W. Chu, Y. Cheng. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing. Sci. Rep., 7, 41211-41217(2017).

    [14] S. Kroesen, W. Horn, J. Imbrock, C. Denz. Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing. Opt. Express, 22, 23339-23348(2014).

    [15] F. Chen. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams. J. Appl. Phys., 106, 081101(2009).

    [16] B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, Q. Zheng. Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal. J. Opt. A, 10, 035301(2008).

    [17] H. Shimizu, G. Obara, M. Terakawa, E. Mazur, M. Obara. Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces. Appl. Phys. Express, 6, 112701(2013).

    [18] J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld. Femtosecond laser-induced periodic surface structures. J. Laser Appl., 24, 042006(2012).

    [19] D. Tan, K. N. Sharafudeen, Y. Z. Yue, J. R. Qiu. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog. Mater. Sci., 76, 154-228(2016).

    [20] R. Stoian, D. Ashkenasi, A. Rosenfeld, E. E. B. Campbell. Coulomb explosion in ultrashort pulsed laser ablation of Al2O3. Phys. Rev. B, 62, 13167-13173(2000).

    [21] N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, E. E. B. Campbell. A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion. Appl. Phys. A, 81, 345-356(2005).

    [22] J. Reif, F. Costache, M. Henyk, S. V. Pandelov. Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics. Appl. Surf. Sci., 197, 891-895(2002).

    [23] B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B, 53, 1749-1761(1996).

    [24] R. M. Osgood, J. Reif. Processing with ultrashort laser pulses. Laser Processing of Materials: Fundamentals, Applications and Developments, 6(2010).

    [25] M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, C. M. Friend. Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask. Appl. Phys. Lett., 82, 1715-1717(2003).

    [26] L. Kovacs, K. K. Wong, K. Polgar. Electrical and pyroelectric properties. Properties of Lithium Niobate, 6(2002).

    [27] S. A. Basun, G. Cook, D. R. Evans. Direct temperature dependence measurements of dark conductivity and two-beam coupling in LiNbO3:Fe. Opt. Express, 16, 3993-4000(2008).

    [28] A. J. Eccles, J. A. van den Berg, A. Brown, J. C. Vickerman. Evidence of a charge induced contribution to the sputtering yield of insulating and semiconducting materials. Appl. Phys. Lett., 49, 188-190(1986).

    [29] M. Yang, Q. Wu, Z. Chen, B. Zhang, B. Tang, J. Yao, I. D. Olenik, J. Xu. Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse. Opt. Lett., 39, 343-346(2014).

    [30] J. Bonse, A. Rosenfeld, J. Krüger. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J. Appl. Phys., 106, 104910(2009).

    [31] J. Reif, O. Varlamova, S. Varlamov, M. Bestehorn. The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation. AIP Conf. Proc., 1464, 428-441(2012).

    [32] J. Reif, O. Varlamova, F. Costache. Femtosecond laser induced nanostructure formation: self-organization control parameters. Appl. Phys. A, 92, 1019-1024(2008).

    [33] M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano, 3, 4062-4070(2009).

    [34] T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, E. Mazur. Microstructuring of silicon with femtosecond laser pulses. Appl. Phys. Lett., 73, 1673-1675(1998).

    [35] J. Koppitz, O. F. Schirmer, A. I. Kuznetsov. Thermal dissociation of bipolarons in reduced undoped LiNbO3. Europhys. Lett., 4, 1055-1059(1987).

    CLP Journals

    [1] Jintian Lin, Fang Bo, Ya Cheng, Jingjun Xu, "Advances in on-chip photonic devices based on lithium niobate on insulator," Photonics Res. 8, 1910 (2020)

    Qiang Li, Qiang Wu, Yanan Li, Chunling Zhang, Zixi Jia, Jianghong Yao, Jun Sun, Jingjun Xu, "Femtosecond laser-induced periodic surface structures on lithium niobate crystal benefiting from sample heating," Photonics Res. 6, 789 (2018)
    Download Citation