• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 20, Issue 6, 557 (2022)
MA Han1、2、*, HE Chengfa1, SUN Jing1, and XUN Mingzhu1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11805/tkyda2021442 Cite this Article
    MA Han, HE Chengfa, SUN Jing, XUN Mingzhu. Difference of dose response of PMOS dosimeter to photons of 60Co and 10 keV photons[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(6): 557 Copy Citation Text show less
    References

    [1] HOLMES-SIEDLE A. The space-charge dosimeter: general principles of a new method of radiation detection[J]. Nuclear Instruments Methods, 1974,121(1):169-179. doi:10.1016/0029-554X(74)90153-0.

    [2] KRAMBERGER G, AMBROI K, GüRER U, et al. Development of MOS-FET dosimeters for use in high radiation fields[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators Spectrometers Detectors and Associated Equipment, 2020,978(6):164283. doi:10.1016/j.nima.2020.164283.

    [3] RAY K P,MULLEN E G,STAPOR W J,et al. CRRES dosimetry results and comparisons using the space radiation dosimeter and P-channel MOS dosimeters[J]. IEEE Transactions on Nuclear Science, 1992,39(6):1846-1850. doi:10.1109/23.211376.

    [4] PEJOVIC M M,JAKSIC A B. Contribution of fixed oxide traps to sensitivity of pMOS dosimeters during gamma ray irradiation and annealing at room and elevated temperature[J]. Sensors & Actuators A Physical, 2012(174):85-90. doi:10.1016/j.sna.2011.12.011.

    [5] ZIMIN P A, MROZOVSKAYA E V, CHUBUNOV P A, et al. Calibration and electric characterization of p-MNOS RADFETs at different dose rates and temperatures[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019(940):307-312. doi:10.1016/j.nima.2019.05.099.

    [6] YILMAZ E, KAHRAMAN A, MCGARRIGLE A M, et al. Investigation of RadFET response to X-ray and electron beams[J]. Applied Radiation and Isotopes, 2017(127):156-160. doi:10.1016/j.apradiso.2017.06.004.

    [7] ANDREW H S,ADAMS L. RADFET:a review of the use of metal-oxide-silicon devices as integrating dosimeters[J]. International Journal of Radiation Applications & Instrumentation(part C) Radiation Physics & Chemistry, 1986,28(2):235-244. doi:10.1016/ 1359-0197(86)90134-7.

    [8] BENITO-PAREJO M,IBARMIA S,PORTILLO P. Review and comparison of irradiation response and annealing models for high-sensitivity RADFETs[C]// 2017 17th European Conference on Radiation and Its Effects on Components and Systems(RADECS). Geneva,Switzerland:[s.n.], 2017:1-8.

    [9] ASTM F1467-2011. Standard guide for use of an X-ray tester('10 keV photons) in ionizing radiation effects testing of semiconductor devices and microcircuits[S]. 2011.

    [10] REN Z, AN X, LI G, et al. TID response of bulk Si PMOS FinFETs: bias, fin width and orientation dependence[J]. IEEE Transactions on Nuclear Science, 2020,67(7):1320-1325. doi:10.1109/TNS.2020.2979905.

    [11] MCWHORTER P J,WINOKUR P S. Simple technique for separating the effects of interface traps and trapped oxide charge in metal oxide semiconductor transistors[J]. Applied Physics Letters, 1986,48(2):133-135. doi:10.1063/1.96974.

    [12] OLDHAM T R,MCLEAN F B. Total ionizing dose effects in MOS oxides and devices[J]. IEEE Transactions on Nuclear Science, 2003,50(3):483. doi:10.1109/TNS.2003.812927.

    [13] SCHWANK J R, SHANEYFELT M R, FLEETWOOD D M, et al. Radiation effects in MOS oxides[J]. IEEE Transactions on Nuclear Science, 2008,55(4):1833-1853. doi:10.1109/TNS.2008.2001040.

    [14] PAILLET P,SCHWANK J R,SHANEYFELT M R,et al. Comparison of charge yield in MOS devices for different radiation sources[J]. IEEE Transactions on Nuclear Science, 2002,49(6):2656-2661. doi:10.1109/TNS.2002.805438.

    [15] JOHNSTON A H, SWIMM R T, THORBOURN D O, et al. Field dependence of charge yield in silicon dioxide[J]. IEEE Transactions on Nuclear Science, 2014,61(6):2818-2825. doi:10.1109/tns.2014.2367512.

    [16] GROESENEKEN G,MAES H E,BELTRAN N,et al. A reliable approach to charge pumping measurement in MOS transistors[J]. IEEE Transactions on Electron Devices, 1984(31):42-53. doi:10.1109/TED.1984.21472.

    [17] RASHKEEV S N,FLEETWOOD D M,SCHRIMPF R D,et al. Effects of hydrogen motion on interface trap formation and annealing[J]. IEEE Transactions on Nuclear Science, 2004,51(6):3158-3165. doi:10.1109/TNS.2004.839202.

    [18] HUGHART D R,SCHRIMPF R D,FLEETWOOD D M,et al. The effects of proton-defect interactions on radiation-induced interface-trap formation and annealing[J]. IEEE Transactions on Nuclear Science, 2012,59(6):3087-3092. doi:10.1109/TNS.2012.2220982.

    [19] LI X, LU W, GUO Q, et al. Temperature-switching during irradiation as a test for ELDRS in linear bipolar devices[J]. IEEE Transactions on Nuclear Science, 2018,66(1):199-206. doi:10.1109/TNS.2018.2879383.

    [20] RISTIC G S. Thermal and UV annealing of irradiated pMOS dosimetric transistors[J]. Journal of Physics D Applied Physics, 2009,42(13):135101. doi:10.1088/0022-3727/42/13/135101.

    [21] REBER R A,FLEETWOOD D M. Thermally stimulated current measurements of SiO2 defect density and energy in irradiated metal oxide semiconductor capacitors[J]. Review of Scientific Instruments, 1992,63(12):5714-5725. doi:10.1063/1.1143354.

    [22] GRISCOM D L. ESR studies of damage processes in X-irradiated high purity a-SiO2: OH and characterization of the formyl radical defect[J]. The Journal of Chemical Physics, 1983,78(4):1638. doi:10.1063/1.444962.

    [23] LAMBERT D,GAILLARDIN M,RAINE M,et al. TID effects induced by ARACOR,60Co and ORIATRON photon sources in MOS devices: impact of geometry and materials[J]. IEEE Transactions on Nuclear Science, 2021, 68(5): 991-1001. doi: 10.1109/ TNS.2021.3074711.

    [24] ASAI M. Geant4-a simulation toolkit[J]. Transactions of the American Nuclear Society, 2006, 95(12/16): 757. doi: 10.1016/S0168-9002(03)01368-8.

    MA Han, HE Chengfa, SUN Jing, XUN Mingzhu. Difference of dose response of PMOS dosimeter to photons of 60Co and 10 keV photons[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(6): 557
    Download Citation