• Photonics Research
  • Vol. 7, Issue 3, 260 (2019)
Jie Li1, Zilong Zhang1, Lin Du1, Lili Miao1, Jun Yi1, Bin Huang1, Yanhong Zou1、2、*, Chujun Zhao1、3、*, and Shuangchun Wen1
Author Affiliations
  • 1Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
  • 2e-mail: yanhongzou@hnu.edu.cn
  • 3e-mail: cjzhao@hnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.7.000260 Cite this Article Set citation alerts
    Jie Li, Zilong Zhang, Lin Du, Lili Miao, Jun Yi, Bin Huang, Yanhong Zou, Chujun Zhao, Shuangchun Wen. Highly stable femtosecond pulse generation from a MXene Ti3C2Tx (T = F, O, or OH) mode-locked fiber laser[J]. Photonics Research, 2019, 7(3): 260 Copy Citation Text show less
    (a) XRD patterns of the Ti3C2Tx and Ti3AlC2. (b) Linear absorption spectrum of Ti3C2Tx. (c), (d) SEM images of delaminated Ti3C2Tx after HF etching under different magnifications. (e) Interlayer distance is measured to be 9.85 Å. (f) TEM image of the Ti3C2Tx flakes.
    Fig. 1. (a) XRD patterns of the Ti3C2Tx and Ti3AlC2. (b) Linear absorption spectrum of Ti3C2Tx. (c), (d) SEM images of delaminated Ti3C2Tx after HF etching under different magnifications. (e) Interlayer distance is measured to be 9.85 Å. (f) TEM image of the Ti3C2Tx flakes.
    Ultrafast dynamic process of the Ti3C2Tx sample. (a) Transient absorption curve of the sample and (b) photodynamic curve of the sample.
    Fig. 2. Ultrafast dynamic process of the Ti3C2Tx sample. (a) Transient absorption curve of the sample and (b) photodynamic curve of the sample.
    Experiment setup of open aperture Z-scan measurements with the Ti3C2Tx sample.
    Fig. 3. Experiment setup of open aperture Z-scan measurements with the Ti3C2Tx sample.
    Broadband nonlinear saturable absorption properties of Ti3C2Tx. Open aperture Z-scan measurements of Ti3C2Tx sample under different intensities at (a) 400 nm, (c) 800 nm, and (e) 1560 nm, respectively; relationship between transmittance and input intensity at (b) 400 nm, (d) 800 nm, and (f) 1560 nm, respectively.
    Fig. 4. Broadband nonlinear saturable absorption properties of Ti3C2Tx. Open aperture Z-scan measurements of Ti3C2Tx sample under different intensities at (a) 400 nm, (c) 800 nm, and (e) 1560 nm, respectively; relationship between transmittance and input intensity at (b) 400 nm, (d) 800 nm, and (f) 1560 nm, respectively.
    Experimental setup of the Ti3C2Tx-based mode-locked erbium-doped fiber laser.
    Fig. 5. Experimental setup of the Ti3C2Tx-based mode-locked erbium-doped fiber laser.
    Results of mode locking. (a) Pulse train, (b) spectrum of mode locking, (c) autocorrelation trace, and (d) RF spectrum.
    Fig. 6. Results of mode locking. (a) Pulse train, (b) spectrum of mode locking, (c) autocorrelation trace, and (d) RF spectrum.
    Output power versus pump power.
    Fig. 7. Output power versus pump power.
    Output spectra collection across 7 h.
    Fig. 8. Output spectra collection across 7 h.
    Jie Li, Zilong Zhang, Lin Du, Lili Miao, Jun Yi, Bin Huang, Yanhong Zou, Chujun Zhao, Shuangchun Wen. Highly stable femtosecond pulse generation from a MXene Ti3C2Tx (T = F, O, or OH) mode-locked fiber laser[J]. Photonics Research, 2019, 7(3): 260
    Download Citation