• Nano-Micro Letters
  • Vol. 16, Issue 1, 069 (2024)
He Liu1, Haoxiang Chu1, Hailiang Yuan1, Deliang Li1..., Weisi Deng1, Zhiwei Fu1, Ruonan Liu1, Yiying Liu1, Yixuan Han1, Yanpeng Wang1, Yue Zhao1, Xiaoyu Cui1,* and Ye Tian1,2,**|Show fewer author(s)
Author Affiliations
  • 1College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, People’s Republic of China
  • 2Foshan Graduate School of Innovation, Northeastern University, Foshan 528300, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01287-z Cite this Article
    He Liu, Haoxiang Chu, Hailiang Yuan, Deliang Li, Weisi Deng, Zhiwei Fu, Ruonan Liu, Yiying Liu, Yixuan Han, Yanpeng Wang, Yue Zhao, Xiaoyu Cui, Ye Tian. Bioinspired Multifunctional Self-Sensing Actuated Gradient Hydrogel for Soft-Hard Robot Remote Interaction[J]. Nano-Micro Letters, 2024, 16(1): 069 Copy Citation Text show less
    References

    [1] S. Li, H. Yang, N. Zhu, G. Chen, Y. Miao et al., Biotissue-inspired anisotropic carbon fiber composite hydrogels for logic gates, integrated soft actuators, and sensors with ultra-high sensitivity. Adv. Funct. Mater. 33, 2370065 (2023).

    [2] Y. Qiu, C. Wang, X. Lu, H. Wu, X. Ma et al., A biomimetic Drosera capensis with adaptive decision-predation behavior based on multifunctional sensing and fast actuating capability. Adv. Funct. Mater. 32, 2270077 (2022).

    [3] X.Q. Wang, K.H. Chan, Y. Cheng, T. Ding, T. Li et al., Somatosensory, light-driven, thin-film robots capable of integrated perception and motility. Adv. Mater. 32, e2000351 (2020).

    [4] M. Baumgartner, F. Hartmann, M. Drack, D. Preninger, D. Wirthl et al., Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19, 1102–1109 (2020).

    [5] L. Yang, J. Miao, G. Li, H. Ren, T. Zhang et al., Soft tunable gelatin robot with insect-like claw for grasping, transportation, and delivery. ACS Appl. Polym. Mater. 4, 5431–5440 (2022).

    [6] H. Yan, Y. Wang, W. Shen, F. Li, G. Gao et al., Cable-driven continuum robot perception using skin-like hydrogel sensors. Adv. Funct. Mater. 32, 2203241 (2022).

    [7] X. Yan, T. Wang, H. Li, L. Zhang, H. Xin et al., Flexible aggregation-induced emission-active hydrogel for on-site monitoring of pesticide degradation. ACS Nano 16, 18421–18429 (2022).

    [8] H. Liu, Y. Wang, Z. Shi, D. Tan, X. Yang et al., Fast self-assembly of photonic crystal hydrogel for wearable strain and temperature sensor. Small Methods 6, e2200461 (2022).

    [9] L. Zhang, H. Yan, J. Zhou, Z. Zhao, J. Huang et al., High-performance organohydrogel artificial muscle with compartmentalized anisotropic actuation under microdomain confinement. Adv. Mater. 35, e2202193 (2023).

    [10] Y. Cui, D. Li, C. Gong, C. Chang, Bioinspired shape memory hydrogel artificial muscles driven by solvents. ACS Nano 15, 13712–13720 (2021).

    [11] J.-J. Ye, L.-F. Li, R.-N. Hao, M. Gong, T. Wang et al., Phase-change composite filled natural nanotubes in hydrogel promote wound healing under photothermally triggered drug release. Bioact. Mater. 21, 284–298 (2022).

    [12] X. Luo, L. Zhang, Y. Luo, Z. Cai, H. Zeng et al., Charge-driven self-assembled microspheres hydrogel scaffolds for combined drug delivery and photothermal therapy of diabetic wounds. Adv. Funct. Mater. 33, 2214036 (2023).

    [13] M. Ye, Y. Zhou, H. Zhao, X. Wang, Magnetic microrobots with folate targeting for drug delivery. Cyborg Bionic Syst. 4, 19 (2023).

    [14] P.-P. He, X. Du, Y. Cheng, Q. Gao, C. Liu et al., Thermal-responsive MXene-DNA hydrogel for near-infrared light triggered localized photothermal-chemo synergistic cancer therapy. Small 18, e2200263 (2022).

    [15] J. Wu, Y. Liu, S. Hua, F. Meng, Q. Ma et al., Dynamic cross-linking network construction of carboxymethyl starch enabling temperature and strain bimodal film sensors. ACS Appl. Mater. Interfaces 15, 17293–17300 (2023).

    [16] Q. Yan, R. Ding, H. Zheng, P. Li, Z. Liu et al., Bio-inspired stimuli-responsive Ti3C2Tx/PNIPAM anisotropic hydrogels for high-performance actuators. Adv. Funct. Mater. 33, 2301982 (2023).

    [17] Y. Zhang, Z. Xu, Y. Yuan, C. Liu, M. Zhang et al., Flexible antiswelling photothermal-therapy MXene hydrogel-based epidermal sensor for intelligent human–machine interfacing. Adv. Funct. Mater. 33, 2300299 (2023).

    [18] G. Fusi, D. Del Giudice, O. Skarsetz, S. Di Stefano, A. Walther, Autonomous soft robots empowered by chemical reaction networks. Adv. Mater. 35, e2209870 (2023).

    [19] H. Chen, J. Cheng, X. Cai, J. Han, X. Chen et al., pH-switchable antimicrobial supramolecular hydrogels for synergistically eliminating biofilm and promoting wound healing. ACS Appl. Mater. Interfaces 14, 18120–18132 (2022).

    [20] Y. Liang, Q. Ding, H. Wang, Z. Wu, J. Li et al., Humidity sensing of stretchable and transparent hydrogel films for wireless respiration monitoring. Nano-Micro Lett. 14, 183 (2022).

    [21] C. Jung, S.J. Kim, J. Jang, J.H. Ko, D. Kim et al., Disordered-nanoparticle-based etalon for ultrafast humidity-responsive colorimetric sensors and anti-counterfeiting displays. Sci. Adv. 8, eabm8598 (2022).

    [22] J. Zhang, S. Shen, R. Lin, J. Huang, C. Pu et al., Highly stretchable and biocompatible wrinkled nanoclay-composite hydrogel with enhanced sensing capability for precise detection of myocardial infarction. Adv. Mater. 35, e2209497 (2023).

    [23] H. Chen, X. Zhang, L. Shang, Z. Su, Programmable anisotropic hydrogels with localized photothermal/magnetic responsive properties. Adv. Sci. 9, e2202173 (2022).

    [24] C.-Y. Lo, Y. Zhao, C. Kim, Y. Alsaid, R. Khodambashi et al., Highly stretchable self-sensing actuator based on conductive photothermally-responsive hydrogel. Mater. Today 50, 35–43 (2021).

    [25] C. Qian, Y. Li, C. Chen, L. Han, Q. Han et al., A stretchable and conductive design based on multi-responsive hydrogel for self-sensing actuators. Chem. Eng. J. 454, 140263 (2023).

    [26] P. Xue, C. Valenzuela, S. Ma, X. Zhang, J. Ma et al., Highly conductive MXene/PEDOT: PSS-integrated poly(N-isopropylacrylamide) hydrogels for bioinspired somatosensory soft actuators. Adv. Funct. Mater. 33, 2214867 (2023).

    [27] H. Li, Y. Liang, G. Gao, S. Wei, Y. Jian et al., Asymmetric bilayer CNTs-elastomer/hydrogel composite as soft actuators with sensing performance. Chem. Eng. J. 415, 128988 (2021).

    [28] N. Chen, Y. Zhou, Y. Liu, Y. Mi, S. Zhao et al., Conductive photo-thermal responsive bifunctional hydrogel system with self-actuating and self-monitoring abilities. Nano Res. 15, 7703–7712 (2022).

    [29] H. Liu, R. Liu, K. Chen, Y. Liu, Y. Zhao et al., Bioinspired gradient structured soft actuators: from fabrication to application. Chem. Eng. J. 461, 141966 (2023).

    [30] H. Liu, X. Jia, R. Liu, K. Chen, Z. Wang et al., Multifunctional gradient hydrogel with ultrafast thermo-responsive actuation and ultrahigh conductivity. J. Mater. Chem. A 10, 21874–21883 (2022).

    [31] W. Fan, C. Shan, H. Guo, J. Sang, R. Wang et al., Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials. Sci. Adv. 5, aav7174 (2019).

    [32] H. Cui, N. Pan, W. Fan, C. Liu, Y. Li et al., Ultrafast fabrication of gradient nanoporous all-polysaccharide films as strong, superfast, and multiresponsive actuators. Adv. Funct. Mater. 29, 1807692 (2019).

    He Liu, Haoxiang Chu, Hailiang Yuan, Deliang Li, Weisi Deng, Zhiwei Fu, Ruonan Liu, Yiying Liu, Yixuan Han, Yanpeng Wang, Yue Zhao, Xiaoyu Cui, Ye Tian. Bioinspired Multifunctional Self-Sensing Actuated Gradient Hydrogel for Soft-Hard Robot Remote Interaction[J]. Nano-Micro Letters, 2024, 16(1): 069
    Download Citation