• Matter and Radiation at Extremes
  • Vol. 2, Issue 5, 243 (2017)
Wanguo Zheng1、2, Xiaofeng Wei1, Qihua Zhu1、2, Feng Jing1, Dongxia Hu1、2, Xiaodong Yuan1, Wanjun Dai1, Wei Zhou1, Fang Wang1, Dangpeng Xu1, Xudong Xie1, Bin Feng1, Zhitao Peng1, Liangfu Guo1, Yuanbin Chen1, Xiongjun Zhang1, Lanqin Liu1, Donghui Lin1, Zhao Dang1, Yong Xiang1, Rui Zhang1, Fang Wang1, Huaiting Jia1, and Xuewei Deng1、2、*
Author Affiliations
  • 1Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
  • 2IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai, 200240, China
  • show less
    DOI: 10.1016/j.mre.2017.07.004 Cite this Article
    Wanguo Zheng, Xiaofeng Wei, Qihua Zhu, Feng Jing, Dongxia Hu, Xiaodong Yuan, Wanjun Dai, Wei Zhou, Fang Wang, Dangpeng Xu, Xudong Xie, Bin Feng, Zhitao Peng, Liangfu Guo, Yuanbin Chen, Xiongjun Zhang, Lanqin Liu, Donghui Lin, Zhao Dang, Yong Xiang, Rui Zhang, Fang Wang, Huaiting Jia, Xuewei Deng. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]. Matter and Radiation at Extremes, 2017, 2(5): 243 Copy Citation Text show less
    References

    [1] M. Dunne, Laser Inertial Fusion Energy (LIFE) e a path to US energy independence, in: Annual Meeting of the Southern States Energy Board, 2012.

    [2] J.D. Lindl, P. Amendt, R.L. Berger, S.G. Glendinning, S.H. Glenzer, et al., The physics basis for ignition using indirect-drive targets on the National Ignition Facility, Phys. Plasmas 11 (2) (2004) 339-491.

    [3] M.D. Rosen, J.D. Lindl, J.D. Kilkenny, Recent results on Nova, J. Fusion Energy 13 (2e3) (1994) 155-166.

    [4] T.R. Boehly, R.S. Craxton, T.H. Hinterman, J.H. Kelly, T.J. Kessler, et al., The upgrade to the OMEGA laser system, Rev. Sci. Instrum. 88 (l) (1995) 506e510.

    [5] C.A. Haynam, P.J. Wegner, J.M. Auerbach, M.W. Bowers, S.N. Dixit, et al., National Ignition Facility laser performance status, Appl. Opt. 46 (16) (2007) 3276e3303.

    [6] National Ignition Campaign Execution Plan, UCRL-AR-213718, NIF- 0111975-AA, Rev. 0, June 2005.

    [7] National Ignition Campaign Program Completion Report, LLNL-TR- 637982, September 30, 2012.

    [8] J. Ebradt, J.M. Chaput, LMJ on its way to fusion, J. Phys. Conf. Ser. 244 (2010) 032017.

    [9] X.T. He, W.Y. Zhang, C.F. Ye, Inertial fusion energy research progress in China, in: 6th Symposium on Current Trends in International Fusion Research: A Review, Washington, D.C., USA, 7e11 March 2005.

    [10] Z.Q. Lin, X.M. Deng, D.Y. Fan, S.J. Wang, S.H. Chen, et al., SG-Ⅱ laser elementary research and precision SG-Ⅱ program, Fusion Eng. Des. 44 (1999) 61e66.

    [11] P. Li, F. Jing, D.S. Wu, R.C. Zhao, H. Li, et al., Power balance on the SG-Ⅲ prototype facility, Proc. SPIE 8433 (2012) 843317.

    [12] W.G. Zheng, X.F.Wei, Q.H. Zhu, F. Jing, D. Hu, et al., Laser performance of the SG-Ⅲ laser facility, High Power Laser Sci. Eng. 4 (2016) e21.

    [13] J.D. Moody, B.J. MacGowan, J.E. Rothenberg, R.L. Berger, L. Divol, et al., Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma, Phys. Rev. Lett. 86 (13) (2001) 2810-2813.

    [14] G.A. Kyrala, A. Seifter, J.L. Kline, S.R. Goldman, S.H. Batha, et al., Tuning indirect-drive implosions using cone power balance, Phys. Plasmas 18 (7) (2011) 072703.

    [15] C.K. Li, F.H. Seguin, J.A. Frenje, S.R. Goldman, S.H. Batha, et al., Effects of nonuniform illumination on implosion asymmetry in directdrive inertial confinement fusion, Phys. Rev. Lett. 92 (20) (2004) 205001.

    [16] J. Fuchs, C. Labaune, S. Depierreux, H.A. Baldis, A. Michard, et al., Modification of spatial and temporal gains of stimulated Brillouin and Raman scattering by polarization smoothing, Phys. Rev. Lett. 84 (14) (2000) 3089-3092.

    [17] R.M. Malone, J.R. Bower, D.K. Bradley, T.W. Tunnell, Imaging VISAR diagnostic for the National Ignition Facility (NIF), in: SPIE High-speed Photography and Photonics Conference Alexandria, VA, United States, UCRL-CONF-206587, 2004.

    [18] R. Zhang, M.Z. Li, J.J. Wang, W. Duan, F. Wang, et al., Experimental research on an arbitrary pulse generation system for imaging VISAR, Opt. Laser Technol. 43 (2011) 179-182.

    [19] S.H. Glenzer, B.J. Macgowan, P. Michel, N.B. Meezan, L.J. Suter, et al., Symmetric inertial confinement fusion implosions at ultra-high laser energies, Science 327 (5970) (2010) 1228-1231.

    [20] J. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasmas 2 (1995) 3933.

    [21] M.L. Spaeth, K.R. Manes, M. Bowers, P. Celliers, J.M.D. Nicola, et al., National Ignition Facility laser system performance, Fusion Sci. Technol. 69 (2016) 366-394.

    [22] D.X. Hu, J. Dong, D.P. Xu, X. Huang, W. Zhou, et al., Generation and measurement of complex laser pulse shapes in the SG-Ⅲ laser facility, Chin. Opt. Lett. 13 (4) (2015) 041406.

    [23] J. N eauport, X. Ribeyre, J. Daurios, D. Valla, M. Lavergne, et al., Design and optical characterization of a large continuous phase plate for laser integration line and laser megajoule facilities, Appl. Opt. 42 (23) (2003) 77-82.

    [24] S. Skupsky, R.W. Short, T. Kessler, R.S. Craxton, Improved laser-beam uniformity using the angular dispersion of frequency-modulated light, J. Appl. Phys. 66 (34) (1989) 56-62.

    [25] J.E. Rothenberg, Polarization beam smoothing for inertial confinement fusion, J. Appl. Phys. 87 (2000) 3654-3662.

    [26] J.R. Murray, J. Ray Smith, R.B. Ehrlich, D.T. Kyrazis, C.E. Thompson, et al., Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components, J. Opt. Soc. Am. B 6 (12) (1989) 2402-2411.

    [27] S.P. Regan, J.A. Marozas, R.S. Craxton, J.H. Kelly, W.R. Donaldson, et al., Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams, J. Opt. Soc. Am. B 22 (5) (2005) 998-1002.

    [28] T.R. Boehly, V.A. Smalyuk, D.D. Meyerhofer, J.P. Knauer, D.K. Bradley, et al., Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser, J. Appl. Phys. 85 (1999) 3444-3662.

    [29] S.N. Dixit, D. Munro, J.R. Murray, M. Nostrand, P.J. Wegner, et al., Polarization Smoothing on the National Ignition Facility, UCRL-PROC- 215251, Inertial Fusion Science and Applications, 2005.

    [30] X.X. Huang, H.T. Jia, W. Zhou, F. Zhang, H. Guo, et al., Experimental demonstration of polarization smoothing in a convergent beam, Appl. Opt. 54 (33) (2015) 9786-9790.

    CLP Journals

    [1] Hao Xiong, Zhe-Qiang Zhong, Bin Zhang, Zhan Sui, Xiao-Min Zhang. Untrafast smoothing scheme based on dynamic interference structure between beamlets of laser quad[J]. Acta Physica Sinica, 2020, 69(6): 064206-1

    Wanguo Zheng, Xiaofeng Wei, Qihua Zhu, Feng Jing, Dongxia Hu, Xiaodong Yuan, Wanjun Dai, Wei Zhou, Fang Wang, Dangpeng Xu, Xudong Xie, Bin Feng, Zhitao Peng, Liangfu Guo, Yuanbin Chen, Xiongjun Zhang, Lanqin Liu, Donghui Lin, Zhao Dang, Yong Xiang, Rui Zhang, Fang Wang, Huaiting Jia, Xuewei Deng. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]. Matter and Radiation at Extremes, 2017, 2(5): 243
    Download Citation