• Chinese Journal of Lasers
  • Vol. 46, Issue 11, 1103003 (2019)
Shengxiao Fei1、2, Qing Feng1、2、*, Yang Chen1、2, Xue Bai1、2, and Hongqiang Zhu1、2
Author Affiliations
  • 1College of Physics and Electronic Engineering, Chongqing Key Lab. on Optoelectronic Functional Materials,Chongqing Normal University, Chongqing 401331, China
  • 2Key Lab.of Optics and Engineering, Chongqing Normal University, Chongqing 400047, China
  • show less
    DOI: 10.3788/CJL201946.1103003 Cite this Article Set citation alerts
    Shengxiao Fei, Qing Feng, Yang Chen, Xue Bai, Hongqiang Zhu. Effect of Surface Oxidation on Optical CO Gas-Sensing Characteristics of N/Rh-Codoped Rutile TiO2[J]. Chinese Journal of Lasers, 2019, 46(11): 1103003 Copy Citation Text show less
    References

    [1] Feng Q. First-principles study of point defects in anatase TiO2[J]. Journal of Chongqing Normal University(Natural Science Edition), 26, 78-81(2009).

    [2] Tanaka K. Capule M F V, Hisanaga T. Effect of crystallinity of TiO2 on its photocatalytic action[J]. Chemical Physics Letters, 187, 73-76(1991).

    [3] Lee S H, Yamasue E, Okumura H et al. Effect of oxygen and nitrogen concentration of nitrogen doped TiOx film as photocatalyst prepared by reactive sputtering[J]. Applied Catalysis A: General, 371, 179-190(2009). http://www.sciencedirect.com/science/article/pii/S0926860X09007066

    [4] Tsai S J, Cheng S. Effect of TiO2 crystalline structure in photocatalytic degradation of phenolic contaminants[J]. Catalysis Today, 33, 227-237(1997). http://www.sciencedirect.com/science/article/pii/S0920586196001526

    [5] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 238, 37-38(1972). http://europepmc.org/abstract/MED/12635268

    [6] Zhao J, Yang X D. Photocatalytic oxidation for indoor air purification: a literature review[J]. Building and Environment, 38, 645-654(2003). http://www.sciencedirect.com/science/article/pii/S0360132302002123

    [7] Yu X Y, Liang W, Cheng J J. Ways of improving TiO2 photocatalytic properties[J]. Bulletin of Thechinese Ceramic Society, 1, 53-57(2000).

    [8] Chen X B, Liu L, Yu P Y et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 331, 746-750(2011). http://www.ncbi.nlm.nih.gov/pubmed/21252313

    [9] Wang Y, Feng Q, Wang W H et al. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2[J]. Acta Physica Sinica, 61, 193102(2012).

    [10] Lin Y, Zhou X W, Xiao X R et al. Research progress of solid state dye-sensitized TiO2 nanocrystalline thin film solar cells[J]. Science & Technology Review, 24, 11-15(2006).

    [11] Burnside S D, Shklover V, Barbé C et al. Self-organization of TiO2 nanoparticles in thin films[J]. Chemistry of Materials, 10, 2419-2425(1998). http://pubs.acs.org/doi/abs/10.1021/cm980702b

    [12] Labat F, Baranek P, Adamo C. Structural and electronic properties of selected rutile and anatase TiO2 surfaces: an ab initio investigation[J]. Journal of Chemical Theory and Computation, 4, 341-352(2008). http://europepmc.org/abstract/MED/26620667

    [13] Xiao B, Feng J, Chen J C et al. Study of rutile (110) surface STM image via ab-initio simulation[J]. Acta Physica Sinica, 57, 3769-3774(2008).

    [14] Wu X Y, Selloni A, Nayak S K. First principles study of CO oxidation on TiO2(110): the role of surface oxygen vacancies[J]. The Journal of Chemical Physics, 120, 4512-4516(2004). http://www.ncbi.nlm.nih.gov/pubmed/15268619/

    [15] Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results[J]. Chemical Reviews, 95, 735-758(1995). http://pubs.acs.org/doi/abs/10.1021/cr00035a013

    [16] Zhu H Q, Feng Q. Microscopic characteristics mechanism of optical gas sensing material rutile titanium dioxide (110) surface adsorption of CO molecules[J]. Acta Physica Sinica, 63, 133101(2014).

    [17] Sorescu D C, Yates J T. First principles calculations of the adsorption properties of CO and NO on the defective TiO2(110) surface[J]. The Journal of Physical Chemistry B, 106, 6184-6199(2002). http://pubs.acs.org/doi/pdf/10.1021/jp0143140

    [18] Liu Z, Wang H, Han J X et al. First-principles calculations of the electronic structures and adsorption spectra of Ni, V, Zr, N, P, S-doped and co-doped anatase TiO2[J]. Journal of Atomic and Molecular Physics, 35, 513-525(2018).

    [19] Fang X, Xie Q. First-principles study of N-Mo-W co-doped rutile TiO2[J]. Journal of Atomic and Molecular Physics, 36, 696-701(2019).

    [20] Zeng F J, Tan Y Q, Yu Y S et al. Electronic structure and optical property of Ag-Ce co-doped anatase TiO2[J]. Laser & Optoelectronics Progress, 54, 071601(2017).

    [21] Tan Y Q, Zeng F J. Effect of lanthanum and cerium co-doping on electronic structure and optical properties of anatase tianium dioxide[J]. Laser & Optoelectronics Progress, 55, 061603(2018).

    [22] Gu Y H. First principles study on the effect of the optical properties of TiO2 after double doping and gas molecule adsorption[D]. Chongqing: Chongqing University(2016).

    [23] Han Y, Liu C J, Ge Q F. Interaction of Pt clusters with the anatase TiO2(101) surface: a first principles study[J]. The Journal of Physical Chemistry B, 110, 7463-7472(2006). http://www.ncbi.nlm.nih.gov/pubmed/16599526/

    [24] Shen X C[M]. Semiconductor spectrum and optical properties(1992).

    Shengxiao Fei, Qing Feng, Yang Chen, Xue Bai, Hongqiang Zhu. Effect of Surface Oxidation on Optical CO Gas-Sensing Characteristics of N/Rh-Codoped Rutile TiO2[J]. Chinese Journal of Lasers, 2019, 46(11): 1103003
    Download Citation