• Nano-Micro Letters
  • Vol. 16, Issue 1, 206 (2024)
Peng Lu1,2,†, Xiaofang Liao1,†, Xiaoyao Guo1,†, Chenchen Cai1,†..., Yanhua Liu1,†, Mingchao Chi1,†, Guoli Du1,†, Zhiting Wei1,†, Xiangjiang Meng1,†, and Shuangxi Nie1,†*|Show fewer author(s)
Author Affiliations
  • 1School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People’s Republic of China
  • 2Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01432-2 Cite this Article
    Peng Lu, Xiaofang Liao, Xiaoyao Guo, Chenchen Cai, Yanhua Liu, Mingchao Chi, Guoli Du, Zhiting Wei, Xiangjiang Meng, Shuangxi Nie. Gel-Based Triboelectric Nanogenerators for Flexible Sensing: Principles, Properties, and Applications[J]. Nano-Micro Letters, 2024, 16(1): 206 Copy Citation Text show less
    References

    [1] S.-T. Han, H. Peng, Q. Sun, S. Venkatesh, K.-S. Chung et al., An overview of the development of flexible sensors. Adv. Mater. 29(33), 1700375 (2017).

    [2] W. Li, M. Xu, J. Gao, X. Zhang, H. Huang et al., Large-scale ultra-robust MoS2 patterns directly synthesized on polymer substrate for flexible sensing electronics. Adv. Mater. 35(8), 2207447 (2023).

    [3] X. Wang, Z. Liu, T. Zhang, Flexible sensing electronics for wearable/attachable health monitoring. Small 13(25), 1602790 (2017).

    [4] Y.B. Wan, Y. Wang, C.F. Guo, Recent progresses on flexible tactile sensors. Mater. Today Phys. 1, 61–73 (2017).

    [5] H. Liu, M. Li, S. Liu, P. Jia, X. Guo et al., Spatially modulated stiffness on hydrogels for soft and stretchable integrated electronics. Mater. Horiz. 7(1), 203–213 (2020).

    [6] H. Li, Y. Ma, Y. Huang, Material innovation and mechanics design for substrates and encapsulation of flexible electronics: a review. Mater. Horiz. 8(2), 383–400 (2021).

    [7] W.N. Xiong, C. Zhu, D.L. Guo, C. Hou, Z.X. Yang et al., Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception. Nano Energy 90, 106550 (2021).

    [8] W. Huang, X. Wang, J. Xia, Y. Li, L. Zhang et al., Flexible sensing enabled agri-food cold chain quality control: a review of mechanism analysis, emerging applications, and system integration. Trends in Food Sci. Technol. 133, 189–204 (2023).

    [9] S. Lee, S. Franklin, F.A. Hassani, T. Yokota, M.O.G. Nayeem et al., Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370(6519), 966–970 (2020).

    [10] M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara et al., An ultra-lightweight design for imperceptible plastic electronics. Nature 499(7459), 458–463 (2013).

    [11] B. Zazoum, K.M. Batoo, M.A.A. Khan, Recent advances in flexible sensors and their applications. Sensors 22(12), 4653 (2022).

    [12] Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo et al., Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 11(5), 4507–4513 (2017).

    [13] Y. Wan, Z. Qiu, J. Huang, J. Yang, Q. Wang et al., Natural plant materials as dielectric layer for highly sensitive flexible electronic skin. Small 14(35), 1801657 (2018).

    [14] X. Li, Y. Wang, S. Sun, T. He, Q. Hu et al., Flexible and ultrasensitive piezoelectric composites based on highly (00l)-assembled BaTiO3 microplatelets for wearable electronics application. Adv. Mater. Technol. 4(12), 1900689 (2019).

    [15] L. Guo, G. Wu, Q. Wang, T. Li, B. Yao et al., Advances in triboelectric pressure sensors. Sens. Actuators A 355, 114331 (2023).

    [16] F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012).

    [17] S. Wang, Y. Xie, S. Niu, L. Lin, Z.L. Wang, Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26(18), 2818–2824 (2014).

    [18] S. Wang, S. Niu, J. Yang, L. Lin, Z.L. Wang, Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator. ACS Nano 8(12), 12004–12013 (2014).

    [19] B. Cao, P. Wang, P. Rui, X. Wei, Z. Wang et al., Broadband and output-controllable triboelectric nanogenerator enabled by coupling swing-rotation switching mechanism with potential energy storage/release strategy for low-frequency mechanical energy harvesting. Adv. Energy Mater. 12(46), 2270194 (2022).

    [20] L. He, C. Zhang, B. Zhang, O. Yang, W. Yuan et al., A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoring. ACS Nano 16(4), 6244–6254 (2022).

    [21] Z. Ren, L. Wu, Y. Pang, W. Zhang, R. Yang, Strategies for effectively harvesting wind energy based on triboelectric nanogenerators. Nano Energy 100, 107522 (2022).

    [22] Y.Q. Wang, X. Li, X. Yu, J.Y. Zhu, P. Shen et al., Driving-torque self-adjusted triboelectric nanogenerator for effective harvesting of random wind energy. Nano Energy 99, 107389 (2022).

    [23] R. Xia, R. Zhang, Y. Jie, W. Zhao, X. Cao et al., Natural cotton-based triboelectric nanogenerator as a self-powered system for efficient use of water and wind energy. Nano Energy 92, 106685 (2022).

    [24] Z.L. Wang, From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 84(9), 096502 (2021).

    [25] B. Xu, W. Peng, J. He, Y. Zhang, X. Song et al., Liquid metal-based triboelectric nanogenerators for energy harvesting and emerging applications. Nano Energy 120, 109107 (2024).

    [26] Y. Dai, K. Yu, H. Li, H. Zhu, J. Xie et al., Triboelectric negative air ion generators for efficient membrane fouling control. Chem. Eng. J. 481, 148581 (2024).

    [27] M.S. Rasel, P. Maharjan, M. Salauddin, M.T. Rahman, H.O. Cho et al., An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy 49, 603–613 (2018).

    [28] S.L. Zhang, Y.C. Lai, X. He, R. Liu, Y. Zi et al., Auxetic foam-based contact-mode triboelectric nanogenerator with highly sensitive self-powered strain sensing capabilities to monitor human body movement. Adv. Funct. Mater. 27(25), 1606695 (2017).

    [29] C.M. Lin, J.X. Lan, J. Yu, Z.F. Hua, H. Huang et al., Cocklebur-structured design of plant fibers for high-performance triboelectric nanogenerators and pressure sensors. Mater. Today Commun. 30, 103208 (2022).

    [30] R. Liu, X. Kuang, J. Deng, Y.-C. Wang, A.C. Wang et al., Shape memory polymers for body motion energy harvesting and self-powered mechanosensing. Adv. Mater. 30(8), 1705195 (2018).

    [31] H.-Y. Mi, X. Jing, Q. Zheng, L. Fang, H.-X. Huang et al., High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing. Nano Energy 48, 327–336 (2018).

    [32] Z. Liu, H. Li, B. Shi, Y. Fan, Z.L. Wang et al., Wearable and implantable triboelectric nanogenerators. Adv. Funct. Mater. 29(20), 1808820 (2019).

    [33] H.H. Hsu, X. Zhang, K. Xu, Y. Wang, Q. Wang et al., Self-powered and plant-wearable hydrogel as led power supply and sensor for promoting and monitoring plant growth in smart farming. Chem. Eng. J. 422, 129499 (2021).

    [34] B. Chen, W. Tang, Z.L. Wang, Advanced 3D printing-based triboelectric nanogenerator for mechanical energy harvesting and self-powered sensing. Mater. Today 50, 224–238 (2021).

    [35] B. Chen, Z.L. Wang, Toward a new era of sustainable energy: Advanced triboelectric nanogenerator for harvesting high entropy energy. Small 18(43), 2107034 (2022).

    [36] Y. Wang, J. Zhang, X. Jia, M. Chen, H. Wang et al., TENG-based self-powered device-the heart of life. Nano Energy 119, 109080 (2024).

    [37] X. Meng, C. Cai, B. Luo, T. Liu, Y. Shao et al., Rational design of cellulosic triboelectric materials for self-powered wearable electronics. Nano-Micro Lett. 15(1), 124 (2023).

    [38] L.Z. Rogovina, V.G. Vasil’ev, E.E. Braudo, Definition of the concept of polymer gel. Polym. Sci. Ser. C 50(1), 85–92 (2008).

    [39] M.A. Kuzina, D.D. Kartsev, A.V. Stratonovich, P.A. Levkin, Organogels versus hydrogels: advantages, challenges, and applications. Adv. Funct. Mater. 33, 2301421 (2023).

    [40] Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels. Science 356(6337), eaaf3627 (2017).

    [41] L. Zeng, X. Lin, P. Li, F.-Q. Liu, H. Guo et al., Recent advances of organogels: from fabrications and functions to applications. Polym. Sci. Ser. C 159, 106417 (2021).

    [42] J. Yang, Y. Li, Y. Zheng, Y. Xu, Z. Zheng et al., Versatile aerogels for sensors. Small 15(41), 1902826 (2019).

    [43] W.X. Huang, Q.L. Ding, H. Wang, Z.X. Wu, Y.B. Luo et al., Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection. Nat. Commun. 14(1), 5221 (2023).

    [44] X. Geng, S. Li, L. Mawella-Vithanage, T. Ma, M. Kilani et al., Atomically dispersed Pb ionic sites in PbCdSe quantum dot gels enhance room-temperature NO2 sensing. Nat. Commun. 12(1), 4895 (2021).

    [45] J. Kim, H. Yoo, V.A. Pham Ba, N. Shin, S. Hong, Dye-functionalized sol-gel matrix on carbon nanotubes for refreshable and flexible gas sensors. Sci. Rep. 8(1), 11958 (2018).

    [46] K. Yoshida, T. Hayashi, M. Takinoue, H. Onoe, Repeatable detection of Ag+ ions using a DNA aptamer-linked hydrogel biochemical sensor integrated with microfluidic heating system. Sci. Rep. 12(1), 9692 (2022).

    [47] H. Im, T. Kim, H. Song, J. Choi, J.S. Park et al., High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes. Nat. Commun. 7(1), 10600 (2016).

    [48] T. Sekitani, T. Yokota, K. Kuribara, M. Kaltenbrunner, T. Fukushima et al., Ultraflexible organic amplifier with biocompatible gel electrodes. Nat. Commun. 7(1), 11425 (2016).

    [49] K. Pang, X. Song, Z. Xu, X. Liu, Y. Liu et al., Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci. Adv. 6(46), eabd4045 (2020).

    [50] Y. Cai, J. Shen, C.-W. Yang, Y. Wan, H.-L. Tang et al., Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv. 6(48), eabb5367 (2020).

    [51] M.T.I. Mredha, Y. Lee, A.V. Rama Varma, T. Gupta, R.R. Manimel Wadu et al., Tardigrade-inspired extremotolerant glycerogels. NPG Asia Mater. 15(1), 22 (2023).

    [52] H. Na, Y.-W. Kang, C.S. Park, S. Jung, H.-Y. Kim et al., Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science 376(6590), 301–307 (2022).

    [53] H. Machrafi, F. Iermano, S. Temsamani, I. Bobinac, C.S. Iorio, Enhanced electrical conductivity and stretchability of ionic-liquid PEDOT:PSS air-cathodes for aluminium-air batteries with long lifetime and high specific energy. Sci. Rep. 12(1), 22107 (2022).

    [54] S. Oh, J.-I. Cho, B.H. Lee, S. Seo, J.-H. Lee et al., Flexible artificial Si-In-Zn-O/ion gel synapse and its application to sensory-neuromorphic system for sign language translation. Sci. Adv. 7(44), eabg9450 (2021).

    [55] A.K. Mishra, T.J. Wallin, W. Pan, P. Xu, K. Wang et al., Autonomic perspiration in 3D-printed hydrogel actuators. Sci. Robot. 5(38), e3aaz918 (2020).

    [56] C. Ni, D. Chen, Y. Yin, X. Wen, X. Chen et al., Shape memory polymer with programmable recovery onset. Nature 622, 748 (2023).

    [57] H. Cao, L.X. Duan, Y. Zhang, J. Cao, K. Zhang, Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Sig. Transduct. Target. Ther. 6(1), 426 (2021).

    [58] A. Matsumoto, M. Tanaka, H. Matsumoto, K. Ochi, Y. Moro-oka et al., Synthetic “smart gel” provides glucose-responsive insulin delivery in diabetic mice. Sci. Adv. 3(11), eaaq0723 (2017).

    [59] M. Carone, M.R. Spalinger, R.A. Gaultney, R. Mezzenga, K. Hlavačková et al., Temperature-triggered in situ forming lipid mesophase gel for local treatment of ulcerative colitis. Nat. Commun. 14(1), 3489 (2023).

    [60] G. Chen, F. Wang, X. Zhang, Y. Shang, Y. Zhao, Living microecological hydrogels for wound healing. Sci. Adv. 9(21), eadg3478 (2023).

    [61] Z. Xiong, S. Achavananthadith, S. Lian, L.E. Madden, Z.X. Ong et al., A wireless and battery-free wound infection sensor based on DNA hydrogel. Sci. Adv. 7(47), eabj1617 (2021).

    [62] R. Xie, Z. Liang, Y. Ai, W. Zheng, J. Xiong et al., Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes. Nat. Protoc. 16(2), 937–964 (2020).

    [63] C.S. O’Bryan, T. Bhattacharjee, S. Hart, C.P. Kabb, K.D. Schulze et al., Self-assembled micro-organogels for 3D printing silicone structures. Sci. Adv. 3(5), e1602800 (2017).

    [64] J. Tang, Y. He, D. Xu, W. Zhang, Y. Hu et al., Tough, rapid self-recovery and responsive organogel-based ionotronic for intelligent continuous passive motion system. npj Flexible Electron. 7(1), 28 (2023).

    [65] W. Xu, L.-B. Huang, M.-C. Wong, L. Chen, G. Bai et al., Environmentally friendly hydrogel-based triboelectric nanogenerators for versatile energy harvesting and self-powered sensors. Adv. Energy Mater. 7(1), 1601529 (2017).

    [66] F.G. Torres, O.P. Troncoso, G.E. De-la-Torre, Hydrogel-based triboelectric nanogenerators: properties, performance, and applications. Int. J. Energy Res. 46(5), 5603–5624 (2022).

    [67] Y. Qin, W. Zhang, Y. Liu, J. Zhao, J. Yuan et al., Cellulosic gel-based triboelectric nanogenerators for energy harvesting and emerging applications. Nano Energy 106, 108079 (2023).

    [68] S.J. Wang, X. Jing, H.Y. Mi, Z. Chen, J. Zou et al., Development and applications of hydrogel-based triboelectric nanogenerators: A mini-review. Polymers 14(7), 1452 (2022).

    [69] S. Korkmaz, İA. Kariper, Aerogel based nanogenerators: Production methods, characterizations and applications. Int. J. Energy Res. 44(14), 11088–11110 (2020).

    [70] M.M. Rastegardoost, O.A. Tafreshi, Z. Saadatnia, S. Ghaffari-Mosanenzadeh, C.B. Park et al., Recent advances on porous materials and structures for high-performance triboelectric nanogenerators. Nano Energy 111, 108365 (2023).

    [71] Y. Wu, Y. Luo, T.J. Cuthbert, A.V. Shokurov, P.K. Chu et al., Hydrogels as soft ionic conductors in flexible and wearable triboelectric nanogenerators. Adv. Sci. 9(11), 2106008 (2022).

    [72] A. Ahmed, M.F. El-Kady, I. Hassan, A. Negm, A.M. Pourrahimi et al., Fire-retardant, self-extinguishing triboelectric nanogenerators. Nano Energy 59, 336 (2019).

    [73] Z. Saadatnia, S.G. Mosanenzadeh, T. Li, E. Esmailzadeh, H.E. Naguib, Polyurethane aerogel-based triboelectric nanogenerator for high performance energy harvesting and biomechanical sensing. Nano Energy 65, 104019 (2019).

    [74] H. He, J. Liu, Y. Wang, Y. Zhao, Y. Qin et al., An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16(2), 2953–2967 (2022).

    [75] H. Sun, Y. Zhao, S. Jiao, C. Wang, Y. Jia et al., Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics. Adv. Funct. Mater. 31(24), 2101696 (2021).

    [76] F. Sheng, B. Zhang, Y. Zhang, Y. Li, R. Cheng et al., Ultrastretchable organogel/silicone fiber-helical sensors for self-powered implantable ligament strain monitoring. ACS Nano 16(7), 10958–10967 (2022).

    [77] T. Jing, B. Xu, Y. Yang, Organogel electrode based continuous fiber with large-scale production for stretchable triboelectric nanogenerator textiles. Nano Energy 84, 105867 (2021).

    [78] T. Jing, S. Wang, H. Yuan, Y. Yang, M. Xue et al., Interfacial roughness enhanced gel/elastomer interfacial bonding enables robust and stretchable triboelectric nanogenerator for reliable energy harvesting. Small 19, 2206528 (2023).

    [79] Y. Ren, J. Guo, Z. Liu, Z. Sun, Y. Wu et al., Ionic liquid–based click-ionogels. Sci. Adv. 5(8), eaax0648 (2019).

    [80] K. Hu, Z. Zhao, Y. Wang, L. Yu, K. Liu et al., A tough organohydrogel-based multiresponsive sensor for a triboelectric nanogenerator and supercapacitor toward wearable intelligent devices. J. Mater. Chem. A 10(22), 12092–12103 (2022).

    [81] M. Zhang, R. Yu, X. Tao, Y. He, X. Li et al., Mechanically robust and highly conductive ionogels for soft ionotronics. Adv. Funct. Mater. 33(10), 2208083 (2023).

    [82] L. Sun, H. Huang, Q. Ding, Y. Guo, W. Sun et al., Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics. Adv. Fiber Mater. 4(1), 98–107 (2022).

    [83] W. Zhan, H. Zhang, X. Lyu, Z.-Z. Luo, Y. Yu et al., An ultra-tough and super-stretchable ionogel with multi functions towards flexible iontronics. Sci. China Mater. 66(4), 1539–1550 (2023).

    [84] Q. Zheng, L. Fang, H. Guo, K. Yang, Z. Cai et al., Highly porous polymer aerogel film-based triboelectric nanogenerators. Adv. Funct. Mater. 28(13), 1706365 (2018).

    [85] Y. Mi, Z. Zhao, H. Wu, Y. Lu, N. Wang, Porous polymer materials in triboelectric nanogenerators: a review. Polymers 15(22), 4383 (2023).

    [86] B. Luo, C. Cai, T. Liu, X. Meng, X. Zhuang et al., Multiscale structural nanocellulosic triboelectric aerogels induced by hofmeister effect. Adv. Funct. Mater. 33, 2306810 (2023).

    [87] Y. Luo, M. Yu, Y. Zhang, Y. Wang, L. Long et al., Highly sensitive strain sensor and self-powered triboelectric nanogenerator using a fully physical crosslinked double-network conductive hydrogel. Nano Energy 104, 107955 (2022).

    [88] Z. Wang, C. Chen, L. Fang, B. Cao, X. Tu et al., Biodegradable, conductive, moisture-proof, and dielectric enhanced cellulose-based triboelectric nanogenerator for self-powered human-machine interface sensing. Nano Energy 107, 108151 (2023).

    [89] X. Pu, M. Liu, X. Chen, J. Sun, C. Du et al., Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), e1700015 (2017).

    [90] M. Chi, S. Zhang, T. Liu, Y. Liu, B. Luo et al., Tunable anisotropic structural aramid triboelectric aerogels enabled by magnetic manipulation. Adv. Funct. Mater. 33, 2310280 (2023).

    [91] Y. Qin, J. Mo, Y. Liu, S. Zhang, J. Wang et al., Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv. Funct. Mater. 32(27), 2201846 (2022).

    [92] Q. Fu, Y. Liu, T. Liu, J. Mo, W. Zhang et al., Air-permeable cellulosic triboelectric materials for self-powered healthcare products. Nano Energy 102, 107739 (2022).

    [93] D. Wang, D. Zhang, M. Tang, H. Zhang, T. Sun et al., Ethylene chlorotrifluoroethylene/hydrogel-based liquid-solid triboelectric nanogenerator driven self-powered MXene based sensor system for marine environmental monitoring. Nano Energy 100, 107509 (2022).

    [94] H. He, Y. Qin, J. Liu, Y. Wang, J. Wang et al., A wearable self-powered fire warning e-textile enabled by aramid nanofibers/MXene silver nanowires aerogel fiber for fire protection used in firefighting clothing. Chem. Eng. J. 460, 141661 (2023).

    [95] J. Yang, J. An, Y. Sun, J. Zhang, L. Zu et al., Transparent self-powered triboelectric sensor based on PVA/PA hydrogel for promoting human-machine interaction in nursing and patient safety. Nano Energy 97, 107199 (2022).

    [96] Z. Xu, F. Zhou, H. Yan, G. Gao, H. Li et al., Anti-freezing organohydrogel triboelectric nanogenerator toward highly efficient and flexible human-machine interaction at −30 °C. Nano Energy 90, 106614 (2021).

    [97] S.-H. Jeong, Y. Lee, M.-G. Lee, W.J. Song, J.-U. Park et al., Accelerated wound healing with an ionic patch assisted by a triboelectric nanogenerator. Nano Energy 79, 105463 (2021).

    [98] Y. Li, Z. Tian, X.Z. Gao, H.Y. Zhao, X. Li et al., All-weather self-powered intelligent traffic monitoring system based on a conjunction of self-healable piezoresistive sensors and triboelectric nanogenerators. Adv. Funct. Mater. 33, 2308845 (2023).

    [99] M.T. Rahman, M.S. Rahman, H. Kumar, K. Kim, S. Kim, Metal-organic framework reinforced highly stretchable and durable conductive hydrogel-based triboelectric nanogenerator for biomotion sensing and wearable human-machine interfaces. Adv. Funct. Mater. 33, 2303471 (2023).

    [100] D. Sun, Y. Feng, S. Sun, J. Yu, S. Jia et al., Transparent, self-adhesive, conductive organohydrogels with fast gelation from lignin-based self-catalytic system for extreme environment-resistant triboelectric nanogenerators. Adv. Funct. Mater. 32(28), 2201335 (2022).

    [101] S. Hasan, A.Z. Kouzani, S. Adams, J. Long, M.A.P. Mahmud, Comparative study on the contact-separation mode triboelectric nanogenerator. J. Electrost. 116, 103685 (2022).

    [102] Y. Shao, G. Du, B. Luo, T. Liu, J. Zhao et al., A tough monolithic-integrated triboelectric bioplastic enabled by dynamic covalent chemistry. Adv. Mater. 36, 2311993 (2024).

    [103] Q. Tang, Z. Wang, W. Chang, J. Sun, W. He et al., Interface static friction enabled ultra-durable and high output sliding mode triboelectric nanogenerator. Adv. Funct. Mater. 32(26), 2202055 (2022).

    [104] W. Akram, Q. Chen, G. Xia, J. Fang, A review of single electrode triboelectric nanogenerators. Nano Energy 106, 108043 (2023).

    [105] W. Paosangthong, M. Wagih, R. Torah, S. Beeby, Textile-based triboelectric nanogenerator with alternating positive and negative freestanding grating structure. Nano Energy 66, 104148 (2019).

    [106] Y. Wu, T.J. Cuthbert, Y. Luo, P.K. Chu, C. Menon, Cross-link-dependent ionogel-based triboelectric nanogenerators with slippery and antireflective properties. Small 19(24), 2301381 (2023).

    [107] L.-B. Huang, W. Xu, G. Bai, M.-C. Wong, Z. Yang et al., Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator. Nano Energy 30, 36–42 (2016).

    [108] Y. Xu, W. Yang, X. Lu, Y. Yang, J. Li et al., Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring. ACS Nano 15(10), 16368–16375 (2021).

    [109] H. Yang, M. Deng, Q. Tang, W. He, C. Hu et al., A nonencapsulative pendulum-like paper–based hybrid nanogenerator for energy harvesting. Adv. Energy Mater. 9(33), 1901149 (2019).

    [110] R. Walden, I. Aazem, A. Babu, S.C. Pillai, Textile-triboelectric nanogenerators (T-TENGs) for wearable energy harvesting devices. Chem. Eng. J. 451, 138741 (2023).

    [111] M. Zhu, J. Zhang, Z. Wang, X. Yu, Y. Zhang et al., Double-blade structured triboelectric–electromagnetic hybrid generator with aerodynamic enhancement for breeze energy harvesting. Appl. Energy 326, 119970 (2022).

    [112] K. Zhao, C. Liu, T. Shao, Y. Fan, R. Chen et al., Enhanced thermoelectric performance of Bi2Te3 by carbon nanotubes and silicate aerogel co-doping toward ocean energy harvesting. Mater. Today Sustain. 23, 100476 (2023).

    [113] C. Shan, W. He, H. Wu, S. Fu, K. Li et al., Dual mode TENG with self-voltage multiplying circuit for blue energy harvesting and water wave monitoring. Adv. Funct. Mater. 33(47), 2305768 (2023).

    [114] C. Liu, J. Liu, J. Liu, C. Zhao, B. Shan et al., A wind-driven rotational direct current triboelectric nanogenerator for self-powered inactivation of seawater microorganisms. Mater. Today Energy 26, 100991 (2022).

    [115] S. Shen, J. Fu, J. Yi, L. Ma, F. Sheng et al., High-efficiency wastewater purification system based on coupled photoelectric-catalytic action provided by triboelectric nanogenerator. Nano-Micro Lett. 13(1), 194 (2021).

    [116] D. Tan, Q. Zeng, X. Wang, S. Yuan, Y. Luo et al., Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Lett. 14(1), 124 (2022).

    [117] H. Guo, X. Pu, J. Chen, Y. Meng, M.-H. Yeh et al., A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 3(20), eaat2516 (2018).

    [118] M. Ma, Z. Zhang, Z. Zhao, Q. Liao, Z. Kang et al., Self-powered flexible antibacterial tactile sensor based on triboelectric-piezoelectric-pyroelectric multi-effect coupling mechanism. Nano Energy 66, 104105 (2019).

    [119] M. Mariello, L. Fachechi, F. Guido, M. De Vittorio, Conformal, ultra-thin skin-contact-actuated hybrid piezo/triboelectric wearable sensor based on aln and parylene-encapsulated elastomeric blend. Adv. Funct. Mater. 31(27), 2101047 (2021).

    [120] Y. Xi, P. Tan, Z. Li, Y. Fan, Self-powered wearable iot sensors as human-machine interfaces. Soft Sci. (2023).

    [121] F. Xing, Z. Ou, X. Gao, B. Chen, Z.L. Wang, Harvesting electrical energy from high temperature environment by aerogel nano-covered triboelectric yarns. Adv. Funct. Mater. 32(49), 2205275 (2022).

    [122] H. Luo, J. Du, P. Yang, Y. Shi, Z. Liu et al., Human–machine interaction via dual modes of voice and gesture enabled by triboelectric nanogenerator and machine learning. ACS Appl. Mater. Interfaces 15(13), 17009–17018 (2023).

    [123] Y. Song, J. Min, Y. Yu, H. Wang, Y. Yang et al., Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 6(40), eaay9842 (2020).

    [124] X. Wei, B. Wang, Z. Wu, Z.L. Wang, An open-environment tactile sensing system: toward simple and efficient material identification. Adv. Mater. 34(29), 2203073 (2022).

    [125] Y.-J. Fan, M.-Z. Huang, Y.-C. Hsiao, Y.-W. Huang, C.-Z. Deng et al., Enhancing the sensitivity of portable biosensors based on self-powered ion concentration polarization and electrical kinetic trapping. Nano Energy 69, 104407 (2020).

    [126] Z. Wen, Q. Shen, X. Sun, Nanogenerators for self-powered gas sensing. Nano-Micro Lett. 9(4), 45 (2017).

    [127] S. Shen, J. Yi, Z. Sun, Z. Guo, T. He et al., Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 14(1), 225 (2022).

    [128] B. Zhou, J. Liu, X. Huang, X. Qiu, X. Yang et al., Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control. Nano-Micro Lett. 15(1), 72 (2023).

    [129] H. Lei, H. Ji, X. Liu, B. Lu, L. Xie et al., Self-assembled porous-reinforcement microstructure-based flexible triboelectric patch for remote healthcare. Nano-Micro Lett. 15(1), 109 (2023).

    [130] Y. Zhu, B. Luo, X. Zou, T. Liu, S. Zhang et al., Triboelectric probes integrated with deep learning for real-time online monitoring of suspensions in liquid transport. Nano Energy 122, 109340 (2024).

    [131] Y. Zhu, Y. Xia, M. Wu, W. Guo, C. Jia et al., Wearable, freezing-tolerant, and self-powered electroluminescence system for long-term cold-resistant displays. Nano Energy 98, 107309 (2022).

    [132] Y.-W. Cai, X.-N. Zhang, G.-G. Wang, G.-Z. Li, D.-Q. Zhao et al., A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for e-skin. Nano Energy 81, 105663 (2021).

    [133] Y.-W. Cai, G.-G. Wang, Y.-C. Mei, D.-Q. Zhao, J.-J. Peng et al., Self-healable, super-stretchable and shape-adaptive triboelectric nanogenerator based on double cross-linked PDMS for electronic skins. Nano Energy 102, 107683 (2022).

    [134] H.L. Wang, Z.H. Guo, X. Pu, Z.L. Wang, Ultralight iontronic triboelectric mechanoreceptor with high specific outputs for epidermal electronics. Nano-Micro Lett. 14(1), 86 (2022).

    [135] C. Cai, X. Meng, L. Zhang, B. Luo, Y. Liu et al., High strength and toughness polymeric triboelectric materials enabled by dense crystal-domain cross-linking. Nano Lett. 24(12), 3826–3834 (2024).

    [136] S. Hu, J. Han, Z. Shi, K. Chen, N. Xu et al., Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator. Nano-Micro Lett. 14(1), 115 (2022).

    [137] Y. Liu, C. Zhao, Y. Xiong, J. Yang, H. Jiao et al., Versatile ion-gel fibrous membrane for energy-harvesting iontronic skin. Adv. Funct. Mater. 33(37), 2303723 (2023).

    [138] F. Wu, C. Li, Y. Yin, R. Cao, H. Li et al., A flexible, lightweight, and wearable triboelectric nanogenerator for energy harvesting and self-powered sensing. Adv. Mater. Technol. 4(1), 1800216 (2018).

    [139] Y. Lee, S.H. Cha, Y.-W. Kim, D. Choi, J.-Y. Sun, Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators. Nat. Commun. 9(1), 1804 (2018).

    [140] M. Wu, X. Wang, Y. Xia, Y. Zhu, S. Zhu et al., Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 95, 106967 (2022).

    [141] H. Kim, S. Choi, Y. Hong, J. Chung, J. Choi et al., Biocompatible and biodegradable triboelectric nanogenerators based on hyaluronic acid hydrogel film. Appl. Mater. Today 22, 100920 (2021).

    [142] J. Yue, C. Li, X. Ji, Y. Tao, J. Lu et al., Highly tough and conductive hydrogel based on defect-patched reduction graphene oxide for high-performance self-powered flexible sensing micro-system. Chem. Eng. J. 466, 143358 (2023).

    [143] R. Li, Z. Xu, L. Li, J. Wei, W. Wang et al., Breakage-resistant hydrogel electrode enables ultrahigh mechanical reliability for triboelectric nanogenerators. Chem. Eng. J. 454, 140261 (2023).

    [144] X. Guo, F. Yang, X. Sun, Y. Bai, G. Liu et al., Anti-freezing self-adhesive self-healing degradable touch panel with ultra-stretchable performance based on transparent triboelectric nanogenerators. Adv. Funct. Mater. 32(31), 2201230 (2022).

    [145] T. Liu, M. Liu, S. Dou, J. Sun, Z. Cong et al., Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano 12(3), 2818–2826 (2018).

    [146] P. Chen, Q. Wang, X. Wan, M. Yang, C. Liu et al., Wireless electrical stimulation of the vagus nerves by ultrasound-responsive programmable hydrogel nanogenerators for anti-inflammatory therapy in sepsis. Nano Energy 89, 106327 (2021).

    [147] P. Kanokpaka, Y.-H. Chang, C.-C. Chang, M. Rinawati, P.-C. Wang et al., Enabling glucose adaptive self-healing hydrogel based triboelectric biosensor for tracking a human perspiration. Nano Energy 112, 108513 (2023).

    [148] T. Jing, B. Xu, Y. Yang, M. Li, Y. Gao, Organogel electrode enables highly transparent and stretchable triboelectric nanogenerators of high power density for robust and reliable energy harvesting. Nano Energy 78, 105373 (2020).

    [149] P. Cui, Y. Ge, X. Yao, J. Wang, J. Zhang et al., Slippery contact on organogel enabling droplet energy harvest. Nano Energy 109, 108286 (2023).

    [150] T. Huang, Y. Long, Z. Dong, Q. Hua, J. Niu et al., Ultralight, elastic, hybrid aerogel for flexible/wearable piezoresistive sensor and solid–solid/gas–solid coupled triboelectric nanogenerator. Adv. Sci. 9(34), 2204519 (2022).

    [151] Z. Qian, R. Li, J. Guo, Z. Wang, X. Li et al., Triboelectric nanogenerators made of polybenzazole aerogels as fire-resistant negative tribo-materials. Nano Energy 64, 103900 (2019).

    [152] C. Gao, W. Zhang, T. Liu, B. Luo, C. Cai et al., Hierarchical porous triboelectric aerogels enabled by heterointerface engineering. Nano Energy 121, 109223 (2024).

    [153] Y. Long, B. Jiang, T. Huang, Y. Liu, J. Niu et al., Super-stretchable, anti-freezing, anti-drying organogel ionic conductor for multi-mode flexible electronics. Adv. Funct. Mater. 33(41), 2304625 (2023).

    [154] K. Banaś, J. Harasym, Natural gums as oleogelators. Int. J. Mol. Sci. 22(23), 12977 (2021).

    [155] S. Sivakanthan, S. Fawzia, T. Madhujith, A. Karim, Synergistic effects of oleogelators in tailoring the properties of oleogels: a review. Rev. Food Sci. Food Saf. 21(4), 3507–3539 (2022).

    [156] Y. Wang, X. Yao, S. Wu, Q. Li, J. Lv et al., Bioinspired solid organogel materials with a regenerable sacrificial alkane surface layer. Adv. Mater. 29(26), 1700865 (2017).

    [157] B. Yiming, X. Guo, N. Ali, N. Zhang, X. Zhang et al., Ambiently and mechanically stable ionogels for soft ionotronics. Adv. Funct. Mater. 31(33), 2102773 (2021).

    [158] Z. Gao, T. Xu, X. Miao, J. Lu, X. Zhu et al., A thermal-driven self-replenishing slippery coating. Surf. Interfaces 24, 101022 (2021).

    [159] C. Urata, H. Nagashima, B.D. Hatton, A. Hozumi, Transparent organogel films showing extremely efficient and durable anti-icing performance. ACS Appl. Mater. Interfaces 13(24), 28925–28937 (2021).

    [160] Y. Bai, L. Xu, S.Q. Lin, J.J. Luo, H.F. Qin et al., Charge pumping strategy for rotation and sliding type triboelectric nanogenerators. Adv. Energy Mater. 10(21), 2000605 (2020).

    [161] Y. Qian, J. Nie, X. Ma, Z. Ren, J. Tian et al., Octopus tentacles inspired triboelectric nanogenerators for harvesting mechanical energy from highly wetted surface. Nano Energy 60, 493–502 (2019).

    [162] Z. Zhou, W. Yuan, Functionally integrated conductive organohydrogel sensor for wearable motion detection, triboelectric nanogenerator and non-contact sensing. Compos. A 172, 107603 (2023).

    [163] B. Wang, L. Dai, L.A. Hunter, L. Zhang, G. Yang et al., A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications. Carbohydr. Polym. 268, 118210 (2021).

    [164] D. Yang, Y. Ni, X. Kong, S. Li, X. Chen et al., Self-healing and elastic triboelectric nanogenerators for muscle motion monitoring and photothermal treatment. ACS Nano 15(9), 14653–14661 (2021).

    [165] C. Qian, L. Li, M. Gao, H. Yang, Z. Cai et al., All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy 64, 103885 (2019).

    [166] Y. Cheng, W. Zhu, X. Lu, C. Wang, Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing. Nano Energy 98, 107229 (2022).

    [167] Z. Saadatnia, S.G. Mosanenzadeh, E. Esmailzadeh, H.E. Naguib, A high performance triboelectric nanogenerator using porous polyimide aerogel film. Sci. Rep. 9, 1370 (2019).

    [168] Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013).

    [169] F.G. Torres, O.P. Troncoso, G.E. De-la-Torre, Hydrogel-based triboelectric nanogenerators: properties, performance, and applications. Int. J. Energy Res. 46(5), 5603–5624 (2021).

    [170] Y. Zhang, Y. Tan, J. Lao, H. Gao, J. Yu, Hydrogels for flexible electronics. ACS Nano 17(11), 9681–9693 (2023).

    [171] L. Hu, P.L. Chee, S. Sugiarto, Y. Yu, C. Shi et al., Hydrogel-based flexible electronics. Adv. Mater. 35(14), 2205326 (2023).

    [172] Y. Yang, L. Sha, H. Zhao, Z. Guo, M. Wu et al., Recent advances in cellulose microgels: preparations and functionalized applications. Adv. Colloid Interface Sci. 311, 102815 (2023).

    [173] H. Yin, F. Liu, T. Abdiryim, X. Liu, Self-healing hydrogels: from synthesis to multiple applications. ACS Mater. Lett. 5(7), 1787–1830 (2023).

    [174] Y. Ohm, C. Pan, M.J. Ford, X. Huang, J. Liao et al., Publisher correction: an electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nat. Electron. 4(4), 313–313 (2021).

    [175] H. Peng, Y. Xin, J. Xu, H. Liu, J. Zhang, Ultra-stretchable hydrogels with reactive liquid metals as asymmetric force-sensors. Mater. Horiz. 6(3), 618–625 (2019).

    [176] M. Wang, H. Chen, X. Li, G. Wang, C. Peng et al., An extremely transparent and multi-responsive healable hydrogel strain sensor. J. Mater. Chem. A 10(45), 24096–24105 (2022).

    [177] J. Park, N. Jeon, S. Lee, G. Choe, E. Lee et al., Conductive hydrogel constructs with three-dimensionally connected graphene networks for biomedical applications. Chem. Eng. J. 446, 137344 (2022).

    [178] X. Sui, H. Guo, C. Cai, Q. Li, C. Wen et al., Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities. Chem. Eng. J. 419, 129478 (2021).

    [179] X. Yao, S. Zhang, L. Qian, N. Wei, V. Nica et al., Super stretchable, self-healing, adhesive ionic conductive hydrogels based on tailor-made ionic liquid for high-performance strain sensors. Adv. Funct. Mater. 32(33), 2204565 (2022).

    [180] B. Zhou, Y. Li, Y. Chen, C. Gao, J. Li et al., In situ synthesis of highly stretchable, freeze-tolerant silk-polyelectrolyte double-network hydrogels for multifunctional flexible sensing. Chem. Eng. J. 446, 137405 (2022).

    [181] D.L. Gan, L. Han, M.H. Wang, W.S. Xing, T. Xu et al., Conductive and tough hydrogels based on biopolymer molecular templates for controlling in situ formation of polypyrrole nanorods. ACS Appl. Mater. Interfaces 10(42), 36218–36228 (2018).

    [182] X. Guo, A. Facchetti, The journey of conducting polymers from discovery to application. Nat. Mater. 19(9), 922–928 (2020).

    [183] X. Luo, L. Zhu, Y.C. Wang, J. Li, J. Nie et al., A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv. Funct. Mater. 31(38), 2104928 (2021).

    [184] Y.- Ba, J.-F. Bao, X.-T. Liu, X.-W. Li, H.-T. Deng, D.-l Wen, X.-S. Zhang, Electron-ion coupling mechanism to construct stable output performance nanogenerator. Research (2021).

    [185] S. Fuchs, K. Shariati, M. Ma, Specialty tough hydrogels and their biomedical applications. Adv. Healthc. Mater. 9(2), 1901396 (2020).

    [186] C.W. Peak, J.J. Wilker, G. Schmidt, A review on tough and sticky hydrogels. Colloid Polym. Sci. 291(9), 2031–2047 (2013).

    [187] F. Yang, J. Zhao, W.J. Koshut, J. Watt, J.C. Riboh et al., A synthetic hydrogel composite with the mechanical behavior and durability of cartilage. Adv. Funct. Mater. 30(36), 2003451 (2020).

    [188] J. Li, Z. Suo, J.J. Vlassak, Stiff, strong, and tough hydrogels with good chemical stability. J. Mater. Chem. B 2(39), 6708–6713 (2014).

    [189] Z. Wang, Y. Cong, J. Fu, Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J. Mater. Chem. B 8(16), 3437–3459 (2020).

    [190] Y. Han, K. Zhao, G. Chen, R.A. Li, C. Zhou et al., A mechanically strong and self-adhesive all-solid-state ionic conductor based on the double-network strategy. J. Mater. Chem. A 11(36), 19637–19644 (2023).

    [191] J. Kim, G. Zhang, M. Shi, Z. Suo, Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 374(6564), 212–216 (2021).

    [192] L.-B. Huang, X. Dai, Z. Sun, M.-C. Wong, S.-Y. Pang et al., Environment-resisted flexible high performance triboelectric nanogenerators based on ultrafast self-healing non-drying conductive organohydrogel. Nano Energy 82, 105724 (2021).

    [193] A. Khan, S. Ginnaram, C.-H. Wu, H.-W. Lu, Y.-F. Pu et al., Fully self-healable, highly stretchable, and anti-freezing supramolecular gels for energy-harvesting triboelectric nanogenerator and self-powered wearable electronics. Nano Energy 90, 106525 (2021).

    [194] Y.C. Lai, H.M. Wu, H.C. Lin, C.L. Chang, H.H. Chou et al., Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins. Adv. Funct. Mater. 29(40), 1904626 (2019).

    [195] X. Jing, P. Feng, Z. Chen, Z. Xie, H. Li et al., Highly stretchable, self-healable, freezing-tolerant, and transparent polyacrylic acid/nanochitin composite hydrogel for self-powered multifunctional sensors. ACS Sustain. Chem. Eng. 9(28), 9209–9220 (2021).

    [196] L. Jiang, C. Liu, K. Mayumi, K. Kato, H. Yokoyama et al., Highly stretchable and instantly recoverable slide-ring gels consisting of enzymatically synthesized polyrotaxane with low host coverage. Chem. Mater. 30(15), 5013–5019 (2018).

    [197] D. Bao, Z. Wen, J. Shi, L. Xie, H. Jiang et al., An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature. J. Mater. Chem. A 8(27), 13787–13794 (2020).

    [198] X. Dai, Y. Long, B. Jiang, W. Guo, W. Sha et al., Ultra-antifreeze, ultra-stretchable, transparent, and conductive hydrogel for multi-functional flexible electronics as strain sensor and triboelectric nanogenerator. Nano Res. 15(6), 5461–5468 (2022).

    [199] Z. Liu, Y. Faraj, X.J. Ju, W. Wang, R. Xie et al., Nanocomposite smart hydrogels with improved responsiveness and mechanical properties: a mini review. J. Polym. Sci. Part B Polym. Phys. 56(19), 1306–1313 (2018).

    [200] F.G. Downs, D.J. Lunn, M.J. Booth, J.B. Sauer, W.J. Ramsay et al., Multi-responsive hydrogel structures from patterned droplet networks. Nat. Chem. 12(4), 363–371 (2020).

    [201] C. Li, G.C. Lau, H. Yuan, A. Aggarwal, V.L. Dominguez et al., Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Sci. Robot. 5(49), eabb9822 (2020).

    [202] H. Zhao, S. Pan, A. Natalia, X. Wu, C.-A.J. Ong et al., A hydrogel-based mechanical metamaterial for the interferometric profiling of extracellular vesicles in patient samples. Nat. Biomed. Eng. 7(2), 135–148 (2022).

    [203] R. Wang, X. Jin, Q. Wang, Q. Zhang, H. Yuan et al., A transparent, flexible triboelectric nanogenerator for anti-counterfeiting based on photothermal effect. Matter 6(5), 1514–1529 (2023).

    [204] P. Terech, R.G. Weiss, Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97(8), 3133–3160 (1997).

    [205] J.V. Alemán, A.V. Chadwick, J. He, M. Hess, K. Horie et al., Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl. Chem. 79(10), 1801–1829 (2007).

    [206] Z. Luo, W. Li, J. Yan, J. Sun, Roles of ionic liquids in adjusting nature of ionogels: a mini review. Adv. Funct. Mater. 32(32), 2203988 (2022).

    [207] Y. Wu, J. Qu, X. Zhang, K. Ao, Z. Zhou et al., Biomechanical energy harvesters based on ionic conductive organohydrogels via the hofmeister effect and electrostatic interaction. ACS Nano 15(8), 13427–13435 (2021).

    [208] J. Liu, B. Zhang, P. Zhang, K. Zhao, Z. Lu et al., Protein crystallization-mediated self-strengthening of high-performance printable conducting organohydrogels. ACS Nano 16(11), 17998–18008 (2022).

    [209] Y. Zhang, Q. Song, Y. Tian, G. Zhao, Y. Zhou, Insights into biomacromolecule-based alcogels: a review on their synthesis, characteristics and applications. Food Hydrocoll. 128, 107574 (2022).

    [210] G. Choudhary, J. Dhariwal, M. Saha, S. Trivedi, M.K. Banjare et al., Ionic liquids: environmentally sustainable materials for energy conversion and storage applications. Environ. Sci. Pollut. Res. 31, 10296–10316 (2024).

    [211] D. Wang, S. Zhao, R. Yin, L. Li, Z. Lou et al., Recent advanced applications of ion-gel in ionic-gated transistor. npj Flex. Electron. 5(1), 13 (2021).

    [212] K.S. Egorova, E.G. Gordeev, V.P. Ananikov, Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev. 117(10), 7132–7189 (2017).

    [213] Y. Gao, W. Zhang, L. Li, Z. Wang, Y. Shu et al., Ionic liquid-based gels for biomedical applications. Chem. Eng. J. 452, 139248 (2023).

    [214] M. Wang, P. Zhang, M. Shamsi, J.L. Thelen, W. Qian et al., Tough and stretchable ionogels by in situ phase separation. Nat. Mater. 21(3), 359–365 (2022).

    [215] Q. Ding, Z. Wu, K. Tao, Y. Wei, W. Wang et al., Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. Mater. Horiz. 9(5), 1356–1386 (2022).

    [216] D. Zhang, Y. Liu, Y. Liu, Y. Peng, Y. Tang et al., A general crosslinker strategy to realize intrinsic frozen resistance of hydrogels. Adv. Mater. 33(42), 2104006 (2021).

    [217] Z. He, C. Wu, M. Hua, S. Wu, D. Wu et al., Bioinspired multifunctional anti-icing hydrogel. Matter 2(3), 723–734 (2020).

    [218] Z. Wu, W. Shi, H. Ding, B. Zhong, W. Huang et al., Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing. J. Mater. Chem. C 9(39), 13668–13679 (2021).

    [219] J.-Y. Yu, S.E. Moon, J.H. Kim, S.M. Kang, Ultrasensitive and highly stretchable multiple-crosslinked ionic hydrogel sensors with long-term stability. Nano-Micro Lett. 15(1), 51 (2023).

    [220] L. Zhu, J. Xu, J. Song, M. Qin, S. Gu et al., Transparent, stretchable and anti-freezing hybrid double-network organohydrogels. Sci. China Mater. 65(8), 2207–2216 (2022).

    [221] X. Zhang, C. Cui, S. Chen, L. Meng, H. Zhao et al., Adhesive ionohydrogels based on ionic liquid/water binary solvents with freezing tolerance for flexible ionotronic devices. Chem. Mater. 34(3), 1065–1077 (2022).

    [222] L. Sun, S. Chen, Y. Guo, J. Song, L. Zhang et al., Ionogel-based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range. Nano Energy 63, 103847 (2019).

    [223] J. Shen, Z. Li, J. Yu, B. Ding, Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 40, 282–288 (2017).

    [224] B. Jiang, Y. Long, X. Pu, W. Hu, Z.L. Wang, A stretchable, harsh condition-resistant and ambient-stable hydrogel and its applications in triboelectric nanogenerator. Nano Energy 86, 106086 (2021).

    [225] H. Li, F. Xu, J. Wang, J. Zhang, H. Wang et al., Self-healing fluorinated poly(urethane urea) for mechanically and environmentally stable, high performance, and versatile fully self-healing triboelectric nanogenerators. Nano Energy 108, 108243 (2023).

    [226] X. Li, J. Tao, X. Wang, J. Zhu, C. Pan et al., Networks of high performance triboelectric nanogenerators based on liquid–solid interface contact electrification for harvesting low-frequency blue energy. Adv. Energy Mater. 8, 1800705 (2018).

    [227] S.S. Sonu, N. Rai, I. Chauhan, Multifunctional aerogels: a comprehensive review on types, synthesis and applications of aerogels. J. Sol-Gel Sci. Technol. 105(2), 324–336 (2023).

    [228] H. Zhuo, Y. Hu, X. Tong, Z. Chen, L. Zhong et al., A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Adv. Mater. 30(18), 1706705 (2018).

    [229] L. Wang, M. Zhang, B. Yang, J. Tan, X. Ding, Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 14(8), 10633–10647 (2020).

    [230] C.-Y. Huang, J.-F. Feng, G.-C. Li, L.-G. Liao, S.-T. Fan et al., Thermally insulating composite aerogel with both active absorption and passive insulation functions based on azobenzene-modified chitosan/oligomeric β-cyclodextrin. Chem. Eng. J. 457, 141202 (2023).

    [231] L. Feng, P. Wei, Q. Song, J. Zhang, Q. Fu et al., Superelastic, highly conductive, superhydrophobic, and powerful electromagnetic shielding hybrid aerogels built from orthogonal graphene and boron nitride nanoribbons. ACS Nano 16(10), 17049–17061 (2022).

    [232] J. Zheng, T. Hang, Z. Li, W. He, S. Jiang et al., High-performance and multifunctional conductive aerogel films for outstanding electromagnetic interference shielding, Joule heating and energy harvesting. Chem. Eng. J. 471, 144548 (2023).

    [233] T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15(1), 45 (2023).

    [234] R.W. Pekala, F.M. Kong, A synthetic route to organic aerogels-mechanism, structure, and properties. J. Phys. Colloques 24, C4 (1989).

    [235] F. Guo, Y. Jiang, Z. Xu, Y. Xiao, B. Fang et al., Highly stretchable carbon aerogels. Nat. Commun. 9(1), 881 (2018).

    [236] S. Cui, L. Zhou, D. Liu, S. Li, L. Liu et al., Improving performance of triboelectric nanogenerators by dielectric enhancement effect. Matter 5(1), 180–193 (2022).

    [237] G. Du, J. Wang, Y. Liu, J. Yuan, T. Liu et al., Fabrication of advanced cellulosic triboelectric materials via dielectric modulation. Adv. Sci. 10(15), 2206243 (2023).

    [238] V. Rahmanian, T. Pirzada, S. Wang, S.A. Khan, Cellulose-based hybrid aerogels: strategies toward design and functionality. Adv. Mater. 33(51), 2102892 (2021).

    [239] H.-Y. Mi, X. Jing, Z. Cai, Y. Liu, L.-S. Turng et al., Highly porous composite aerogel based triboelectric nanogenerators for high performance energy generation and versatile self-powered sensing. Nanoscale 10, 23131–23140 (2018).

    [240] L. Zhang, Y. Liao, Y.C. Wang, S.V. Zhang, W.Q. Yang et al., Cellulose II aerogel-based triboelectric nanogenerator. Adv. Funct. Mater. 30(28), 2001763 (2020).

    [241] S. Zhu, Y. Liu, G. Du, Y. Shao, Z. Wei et al., Customizing temperature-resistant cellulosic triboelectric materials for energy harvesting and emerging applications. Nano Energy 124, 109449 (2024).

    [242] S. Wu, D. Chen, W. Han, Y. Xie, G. Zhao et al., Ultralight and hydrophobic MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation. Chem. Eng. J. 446, 137093 (2022).

    [243] L. Su, H. Wang, M. Niu, S. Dai, Z. Cai et al., Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Sci. Adv. 6(26), eaay6689 (2020).

    [244] X. Zhang, X. Cheng, Y. Si, J. Yu, B. Ding, Elastic and highly fatigue resistant ZrO2-SiO2 nanofibrous aerogel with low energy dissipation for thermal insulation. Chem. Eng. J. 433, 133628 (2022).

    [245] Z.L. Yu, B. Qin, Z.Y. Ma, J. Huang, S.C. Li et al., Superelastic hard carbon nanofiber aerogels. Adv. Mater. 31(23), 1900651 (2019).

    [246] X. Shi, X. Fan, Y. Zhu, Y. Liu, P. Wu et al., Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nat. Commun. 13(1), 1119 (2022).

    [247] Z. Jin, F. Zhao, Y. Lei, Y.-C. Wang, Hydrogel-based triboelectric devices for energy-harvesting and wearable sensing applications. Nano Energy 95, 106988 (2022).

    [248] Y. Long, Y. Chen, Y. Liu, G. Chen, W. Guo et al., A flexible triboelectric nanogenerator based on a super-stretchable and self-healable hydrogel as the electrode. Nanoscale 12(24), 12753–12759 (2020).

    [249] F. He, X. You, H. Gong, Y. Yang, T. Bai et al., Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators. ACS Appl. Mater. Interfaces 12(5), 6442–6450 (2020).

    [250] F. Sheng, J. Yi, S. Shen, R. Cheng, C. Ning et al., Self-powered smart arm training band sensor based on extremely stretchable hydrogel conductors. ACS Appl. Mater. Interfaces 13(37), 44868–44877 (2021).

    [251] H. Zhang, K. Xue, X. Xu, X. Wang, B. Wang et al., Green and low-cost alkali-polyphenol synergetic self-catalysis system access to fast gelation of self-healable and self-adhesive conductive hydrogels for self-powered triboelectric nanogenerators. Small 20(10), 2305502 (2024).

    [252] J. Zhao, W. Zhang, T. Liu, B. Luo, Y. Qin et al., Multiscale structural triboelectric aerogels enabled by self-assembly driven supramolecular winding. Adv. Funct. Mater. 34, 2400476 (2024).

    [253] D.W. Kim, J.H. Lee, J.K. Kim, U. Jeong, Material aspects of triboelectric energy generation and sensors. NPG Asia Mater. 12(1), 6 (2020).

    [254] Y. Feng, J. Yu, D. Sun, C. Dang, W. Ren et al., Extreme environment-adaptable and fast self-healable eutectogel triboelectric nanogenerator for energy harvesting and self-powered sensing. Nano Energy 98, 107284 (2022).

    [255] M. Kim, C. Choi, J.P. Lee, J. Kim, C. Cha, Multiscale engineering of nanofiber-aerogel composite nanogenerator with tunable triboelectric performance based on multifunctional polysuccinimide. Small 18(36), 2107316 (2022).

    [256] Y. Liu, T.H. Wong, X. Huang, C.K. Yiu, Y. Gao et al., Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing. Nano Energy 99, 107442 (2022).

    [257] H. Park, S.J. Oh, D. Kim, M. Kim, C. Lee et al., Plasticized PVC-gel single layer-based stretchable triboelectric nanogenerator for harvesting mechanical energy and tactile sensing. Adv. Sci. 9(22), 2201070 (2022).

    [258] G. Zhao, Y. Zhang, N. Shi, Z. Liu, X. Zhang et al., Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 59, 302–310 (2019).

    [259] F. Yi, Z. Zhang, Z. Kang, Q. Liao, Y. Zhang, Recent advances in triboelectric nanogenerator-based health monitoring. Adv. Funct. Mater. 29(41), 1808849 (2019).

    [260] F. Gao, C. Liu, L. Zhang, T. Liu, Z. Wang et al., Wearable and flexible electrochemical sensors for sweat analysis: a review. Microsyst. Nanoeng. 9(1), 1 (2023).

    [261] Z. Bai, X. Wang, M. Huang, Y. Feng, S. Sun et al., Smart battery-free and wireless bioelectronic platform based on a nature-skin-derived organohydrogel for chronic wound diagnosis, assessment, and accelerated healing. Nano Energy 118, 108989 (2023).

    [262] J.-N. Kim, J. Lee, H. Lee, I.-K. Oh, Stretchable and self-healable catechol-chitosan-diatom hydrogel for triboelectric generator and self-powered tremor sensor targeting at parkinson disease. Nano Energy 82, 105705 (2021).

    [263] X. Cao, Y. Xiong, J. Sun, X. Xie, Q. Sun et al., Multidiscipline applications of triboelectric nanogenerators for the intelligent era of internet of things. Nano-Micro Lett. 15(1), 14 (2023).

    [264] C. Zhang, M. Wang, C. Jiang, P. Zhu, B. Sun et al., Highly adhesive and self-healing γ-PGA/PEDOT:PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics. Nano Energy 95, 106991 (2022).

    [265] H. Zhang, D. Zhang, Z. Wang, G. Xi, R. Mao et al., Ultrastretchable, self-healing conductive hydrogel-based triboelectric nanogenerators for human–computer interaction. ACS Appl. Mater. Interfaces 15(4), 5128–5138 (2023).

    [266] A. Yu, M. Zhu, C. Chen, Y. Li, H. Cui et al., Implantable flexible sensors for health monitoring. Adv. Healthc. Mater. 13(2), 2302460 (2024).

    [267] X. Lu, L. Zheng, H. Zhang, W. Wang, Z.L. Wang et al., Stretchable, transparent triboelectric nanogenerator as a highly sensitive self-powered sensor for driver fatigue and distraction monitoring. Nano Energy 78, 105359 (2020).

    [268] S. Nie, C. Chen, C. Zhu, Advanced biomass materials: Progress in the applications for energy, environmental, and emerging fields. Front. Chem. Sci. Eng. 17(7), 795–797 (2023).

    [269] X. Li, J. Wang, Y. Liu, T. Zhao, B. Luo et al., Lightweight and strong cellulosic triboelectric materials enabled by cell wall nanoengineering. Nano Lett. 24(10), 3273–3281 (2024).

    [270] H. Park, S.-J. Oh, M. Kim, C. Lee, H. Joo et al., Plasticizer structural effect for sustainable and high-performance PVC gel-based triboelectric nanogenerators. Nano Energy 114, 108615 (2023).

    [271] H.-Y. Mi, X. Jing, Y. Wang, X. Shi, H. Li et al., Poly[(butyl acrylate)-co-(butyl methacrylate)] as transparent tribopositive material for high-performance hydrogel-based triboelectric nanogenerators. ACS Appl. Polym. Mater. 2(11), 5219–5227 (2020).

    [272] J. Zou, X. Jing, Z. Chen, S.J. Wang, X.S. Hu et al., Multifunctional organohydrogel with ultralow-hysteresis, ultrafast-response, and whole-strain-range linearity for self-powered sensors. Adv. Funct. Mater. 33(15), 2213895 (2023).

    [273] T. Huang, Y. Long, B. Zhao, Q. Hua, Z.L. Wang et al., Hybrid aerogel triboelectric nanogenerator based on the synergistic effect of solid–solid/gas–solid triboelectricity and piezoelectric polarization. ACS Appl. Mater. Interfaces 15(22), 26682–26690 (2023).

    [274] Z. Wang, Z. Liu, G. Zhao, Z. Zhang, X. Zhao et al., Stretchable unsymmetrical piezoelectric BaTiO3 composite hydrogel for triboelectric nanogenerators and multimodal sensors. ACS Nano 16(1), 1661–1670 (2022).

    [275] Z. Yu, Y. Zhang, Y. Wang, J. Zheng, Y. Fu et al., Integrated piezo-tribo hybrid acoustic-driven nanogenerator based on porous MWCNTs/PVDF-TrFE aerogel bulk with embedded PDMS tympanum structure for broadband sound energy harvesting. Nano Energy 97, 107205 (2022).

    [276] K. Shi, X. Huang, B. Sun, Z. Wu, J. He et al., Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity. Nano Energy 57, 450–458 (2019).

    [277] J.X. Liu, G. Liu, Z.H. Guo, W. Hu, C. Zhang et al., Electret elastomer-based stretchable triboelectric nanogenerators with autonomously managed power supplies for self-charging systems. Chem. Eng. J. 462, 142167 (2023).

    [278] J.H. Lee, Y.S. Park, S. Cho, I.S. Kang, J.K. Kim et al., Output voltage modulation in triboelectric nanogenerator by printed ion gel capacitors. Nano Energy 54, 367–374 (2018).

    [279] H. Zhang, X. Gong, X. Li, Material selection and performance optimization strategies for a wearable friction nanogenerator (W-TENG). J. Mater. Chem. A 11, 24454 (2023).

    [280] N. Hao, Y. Liu, C. Cai, Y. Shao, X. Meng et al., Advanced triboelectric materials for self-powered gas sensing systems. Nano Energy 122, 109335 (2024).

    Peng Lu, Xiaofang Liao, Xiaoyao Guo, Chenchen Cai, Yanhua Liu, Mingchao Chi, Guoli Du, Zhiting Wei, Xiangjiang Meng, Shuangxi Nie. Gel-Based Triboelectric Nanogenerators for Flexible Sensing: Principles, Properties, and Applications[J]. Nano-Micro Letters, 2024, 16(1): 206
    Download Citation