• Chinese Journal of Lasers
  • Vol. 43, Issue 8, 806003 (2016)
Li Jiawei1,2,* and Chen Weibiao1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/cjl201643.0806003 Cite this Article Set citation alerts
    Li Jiawei, Chen Weibiao. Bandwidth of Adaptive Optics System in Satellite-Ground Coherent Laser Communication[J]. Chinese Journal of Lasers, 2016, 43(8): 806003 Copy Citation Text show less
    References

    [1] Smutny B, Kaempfner H, Muehlnikel G, et al. 5.6 Gbps optical inter-satellite communication link[J]. Proc SPIE, 2009, 7199: 719906.

         Smutny B, Kaempfner H, Muehlnikel G, et al. 5.6 Gbps optical inter-satellite communication link[J]. Proc SPIE, 2009, 7199: 719906.

    [2] Song Tingting, Ma Jing, Tan Liying, et al. Experiment design and development of the lunar laser communication demonstration in USA[J]. Laser & Optoelectronics Progress, 2014, 51(4): 040004.

         Song Tingting, Ma Jing, Tan Liying, et al. Experiment design and development of the lunar laser communication demonstration in USA[J]. Laser & Optoelectronics Progress, 2014, 51(4): 040004.

    [3] Sodnik Z, Armengola J P, Czichyb R H, et al. Adaptive optics and ESA′s optical ground station[J]. Proc SPIE, 2009, 7464: 746406.

         Sodnik Z, Armengola J P, Czichyb R H, et al. Adaptive optics and ESA′s optical ground station[J]. Proc SPIE, 2009, 7464: 746406.

    [4] Ma Xiaoping, Sun Jianfeng, Hou Peipei, et al. Research progress on overcoming the atmospheric turbulence effect in satellite-to-ground laser communication[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120002.

         Ma Xiaoping, Sun Jianfeng, Hou Peipei, et al. Research progress on overcoming the atmospheric turbulence effect in satellite-to-ground laser communication[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120002.

    [5] Lou Yan, Zhao Yiwu, Chen Chunyi. Atmosphere impact and ground station selection for satellite-to-ground laser communication[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120602.

         Lou Yan, Zhao Yiwu, Chen Chunyi. Atmosphere impact and ground station selection for satellite-to-ground laser communication[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120602.

    [6] Wilks S C, Morris J R, Brase J M, et al. Modeling of adaptive optics-based free-space communications systems[J]. Proc SPIE, 2002, 4821: 453528.

         Wilks S C, Morris J R, Brase J M, et al. Modeling of adaptive optics-based free-space communications systems[J]. Proc SPIE, 2002, 4821: 453528.

    [7] Luo Wen, Geng Chao, Li Xinyang. Simulation and experimental study of single-mode fiber coupling efficiency affected by atmospheric turbulence aberration[J]. Acta Optica Sinica, 2014, 34(6): 0606001.

         Luo Wen, Geng Chao, Li Xinyang. Simulation and experimental study of single-mode fiber coupling efficiency affected by atmospheric turbulence aberration[J]. Acta Optica Sinica, 2014, 34(6): 0606001.

    [8] Belmonte A, Kahn J. Performance of synchronous optical receivers using atmospheric compensation techniques[J]. Optics Express, 2008, 16(18): 14151-14162.

         Belmonte A, Kahn J. Performance of synchronous optical receivers using atmospheric compensation techniques[J]. Optics Express, 2008, 16(18): 14151-14162.

    [9] Zuo L, Dang A, Ren Y, et al. Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence[J].Optics Communication, 2011, 284(6): 1491-1495.

         Zuo L, Dang A, Ren Y, et al. Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence[J].Optics Communication, 2011, 284(6): 1491-1495.

    [10] Liu C, Chen S, Li X, et al. Performance evaluation of adaptive optics for atmospheric coherent laser communications[J]. Optics Express, 2014, 22(13): 15554-15563.

         Liu C, Chen S, Li X, et al. Performance evaluation of adaptive optics for atmospheric coherent laser communications[J]. Optics Express, 2014, 22(13): 15554-15563.

    [11] Li J, Zhang Z, Gao J, et al. Bandwidth of adaptive optics system in atmospheric coherent laser communication[J]. Optics Communication, 2016, 359: 254-260.

         Li J, Zhang Z, Gao J, et al. Bandwidth of adaptive optics system in atmospheric coherent laser communication[J]. Optics Communication, 2016, 359: 254-260.

    [12] Greenwood D P. Bandwidth specification for adaptive optics systems[J]. J Opt Soc Am, 1977, 67(3): 391-393.

         Greenwood D P. Bandwidth specification for adaptive optics systems[J]. J Opt Soc Am, 1977, 67(3): 391-393.

    [13] Andrews L C, Phillips R L. Laser beam propagation through random media[M]. Bellingham: SPIE Press, 2005, 481-492.

         Andrews L C, Phillips R L. Laser beam propagation through random media[M]. Bellingham: SPIE Press, 2005, 481-492.

    [14] Noll R J. Zernike polynomials and atmospheric turbulence[J]. J Opt Soc Am, 1976, 66(3): 207-211.

         Noll R J. Zernike polynomials and atmospheric turbulence[J]. J Opt Soc Am, 1976, 66(3): 207-211.

    CLP Journals

    [1] Ding Yongchao, Wang Deen, Lun Baoli, Wang Chuanjun, Xin Yuxin, Chen Linxie, Hu Dongxia, Dai Wanjun, Zhang Xin, Chen Liangming, Yang Ying, Yuan Qiang, Chen Donghui, Chang Liang. Realization of High Tracking Precision Using a Tip-Tilt Mirror for the 2.4-Meter Telescope-Part I: Prototype Design and Test[J]. Laser & Optoelectronics Progress, 2018, 55(7): 71104