• Optics and Precision Engineering
  • Vol. 31, Issue 14, 2093 (2023)
Tao ZHOU1,2, Yuncan LIU1,*, Senbao HOU1, Xinyu YE1, and Huiling LU3
Author Affiliations
  • 1School of Computer Science and Engineering, North Minzu University, Yinchuan75002, China
  • 2Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan75001, China
  • 3School of Science, Ningxia Medical University, Yinchuan750004, China
  • show less
    DOI: 10.37188/OPE.20233114.2093 Cite this Article
    Tao ZHOU, Yuncan LIU, Senbao HOU, Xinyu YE, Huiling LU. REC-ResNet: Feature enhancement model for COVID-19 aided diagnosis[J]. Optics and Precision Engineering, 2023, 31(14): 2093 Copy Citation Text show less
    Overall structure of REC-ResNet model
    Fig. 1. Overall structure of REC-ResNet model
    Internal structure diagram of Stage2
    Fig. 2. Internal structure diagram of Stage2
    Residual adaptive feature fusion module
    Fig. 3. Residual adaptive feature fusion module
    Efficient feature enhanced Transformer
    Fig. 4. Efficient feature enhanced Transformer
    Cross-level attention enhanced module
    Fig. 5. Cross-level attention enhanced module
    Spatial attention
    Fig. 6. Spatial attention
    Channel attention
    Fig. 7. Channel attention
    Chest X-Ray dataset sample
    Fig. 8. Chest X-Ray dataset sample
    Comparison of various evaluation index values of different CNN classification models
    Fig. 9. Comparison of various evaluation index values of different CNN classification models
    Confusion matrix of classification results of different CNN models
    Fig. 10. Confusion matrix of classification results of different CNN models
    ROC curve of different CNN models
    Fig. 11. ROC curve of different CNN models
    Comparison of evaluation index values of ResNet50 classification model combining different attention mechanisms
    Fig. 12. Comparison of evaluation index values of ResNet50 classification model combining different attention mechanisms
    Confusion matrix of classification results of ResNet50 model combining different attention mechanisms
    Fig. 13. Confusion matrix of classification results of ResNet50 model combining different attention mechanisms
    ROC curve of ResNet50 model combining different attention mechanisms
    Fig. 14. ROC curve of ResNet50 model combining different attention mechanisms
    Comparison of evaluation index values of ablation experiment
    Fig. 15. Comparison of evaluation index values of ablation experiment
    Confusion matrix of ablation experiment classification results
    Fig. 16. Confusion matrix of ablation experiment classification results
    ROC curve of all models in ablation experiment
    Fig. 17. ROC curve of all models in ablation experiment
    Three types of chest X-Ray images and corresponding heat maps
    Fig. 18. Three types of chest X-Ray images and corresponding heat maps
    Ablation ExpModelName
    Exp1ResNet50Network_0
    Exp2ResNet50+RA-FFMNetwork_1
    Exp3ResNet50+RA-FFM+EFE-TMNetwork_2
    Exp4ResNet50+RA-FFM+EFE-TM+CAEMNetwork_3
    Table 1. Design of ablation experiments
    ModelAccPreRecF1 ScoreSpe
    AlexNet88.8388.9088.8388.8688.97
    VGG1691.7591.8591.7591.8091.62
    GoogleNet93.1793.5493.1793.3593.27
    ResNet5093.7593.8693.7593.8093.61
    ResNet10193.9294.0093.9293.9693.44
    Densenet12194.3394.5094.3394.4294.38
    MobileNetV294.5094.6694.5094.5894.54
    InceptionV394.0894.1594.0894.1294.02
    Inception_ResNet_V294.0094.1394.0094.0794.04
    REC-ResNet97.58(↑3.83)97.60(↑3.74)97.58(↑3.83)97.59(↑3.79)97.46(↑3.85)
    Table 2. Comparison of classification performance of different CNN models
    ModelAccPreRecF1 ScoreSpe
    SEResNet5094.9294.9894.9294.9594.81
    SKResNet5095.5895.6095.5895.5995.51
    ResNet50_CBAM95.2595.2895.2595.2695.18
    ResNet50_ECA95.8395.8995.8395.8695.64
    REC-ResNet97.5897.6097.5897.5997.46
    Table 3. Comparison of classification performance of ResNet50 model combining different attention mechanisms
    ModelAccPreRecF1 ScoreSpe
    Network_093.7593.8693.7593.8093.61
    Network_194.4294.5794.4294.4994.33
    Network_296.7596.7696.7596.7396.67
    Network_397.5897.6097.5897.5997.46
    Table 4. Results of ablation experiment(%)
    Tao ZHOU, Yuncan LIU, Senbao HOU, Xinyu YE, Huiling LU. REC-ResNet: Feature enhancement model for COVID-19 aided diagnosis[J]. Optics and Precision Engineering, 2023, 31(14): 2093
    Download Citation