• Chinese Journal of Lasers
  • Vol. 48, Issue 22, 2202011 (2021)
Guowei Yang, Nan Zhou, Min Yang, Yongshuai Zhang, and Yizhong Wang*
Author Affiliations
  • College of Electronic Information and Automation, Tianjin University of Science & Technology, Tianjin 300222, China
  • show less
    DOI: 10.3788/CJL202148.2202011 Cite this Article Set citation alerts
    Guowei Yang, Nan Zhou, Min Yang, Yongshuai Zhang, Yizhong Wang. Automatic Weld Tracking Based on Convolution Neural Network and Correlation Filter[J]. Chinese Journal of Lasers, 2021, 48(22): 2202011 Copy Citation Text show less
    References

    [1] Wu X, Zhang P L, Tang M et al. Formation and microstructure characteristics in spot welding of dissimilar Cu-Al foil by nanosecond laser scanning[J]. Chinese Journal of Lasers, 46, 0402006(2019).

    [2] Ye J H, Liu Y, Xu G C et al. Evaluation of surface quality of lap laser weld joints based on noncontact measurement[J]. Chinese Journal of Lasers, 46, 1002008(2019).

    [3] Zhang S K, Wu Q X, Lin Z Y. Detection and segmentation of structured light stripe in weld image[J]. Acta Optica Sinica, 41, 0515002(2021).

    [4] Zhang B, Chang S, Wang J et al. Feature points extraction of laser vision weld seam based on genetic algorithm[J]. Chinese Journal of Lasers, 46, 0102001(2019).

    [5] Guo J C, Zhu Z M, Yu Y F et al. Research and application of visual sensing technology based on laser structured light in welding industry[J]. Chinese Journal of Lasers, 44, 1200001(2017).

    [6] Yu Z H, Zhou Q X, Chen T. Effective extraction of V-shaped weld contour feature points[J]. Welding Technology, 45, 17-20(2016).

    [7] Yang X J, Xu Y L, Huang S J et al. A recognition algorithm for feature points of V-groove welds based on structured light[J]. Journal of Shanghai Jiao Tong University, 50, 1573-1577(2016).

    [8] Mao Z W, Zhao B, Zhou S L. Image processing of line structured light vision sensing seam tracking[J]. Hot Working Technology, 45, 233-235, 238(2016).

    [9] Hong L, Yang X L, Zhong D P. Feature extraction and analysis of weld seam stripe line on slope analysis method[J]. Transactions of the China Welding Institution, 38, 91-94, 133(2017).

    [10] Lei Z L, Shen J X, Li B W et al. Recognition of narrow-gap edge welding seam based on autonomous threshold value[J]. Acta Optica Sinica, 38, 0815011(2018).

    [11] Hu J, Zhao H, Jiang L. A weld edge detection method based on gradient histogram[J]. Electric Welding Machine, 45, 50-53(2015).

    [12] Kiddee P, Fang Z J, Tan M. A geometry based feature detection method of V-groove weld seams for thick plate welding robots[C]. //2017 2nd International Conference on Control and Robotics Engineering (ICCRE), April 1-3, 2017, Bangkok, Thailand., 43-48(2017).

    [13] Wu T, Yang J C, Liao R Y et al. Weld defect inspection of battery pack based on deep learning of linear array image[J]. Laser & Optoelectronics Progress, 57, 221502(2020).

    [14] Liu M J, Yun B. Application of deep convolution network compression algorithm in weld recognition[J]. Laser & Optoelectronics Progress, 56, 051004(2019).

    [15] Hou W H, Wei Y, Jin Y et al. Deep features based on a DCNN model for classifying imbalanced weld flaw types[J]. Measurement, 131, 482-489(2019).

    [16] Zou Y B, Zhou W L, Chen X Z. Research of laser vision seam detection and tracking system based on depth hierarchical feature[J]. Chinese Journal of Lasers, 44, 0402009(2017).

    [17] Xiao R Q, Xu Y L, Hou Z et al. An adaptive feature extraction algorithm for multiple typical seam tracking based on vision sensor in robotic arc welding[J]. Sensors and Actuators A, 297, 111533(2019).

    [18] Zhang Y S, Yang G W, Wang Q Q et al. Weld feature extraction based on fully convolutional networks[J]. Chinese Journal of Lasers, 46, 0302002(2019).

    [19] Xu N, Wang J J, Guo X Y et al. Survey of visual tracking based on discriminative correlation filters[J]. Journal of Chinese Computer Systems, 41, 2484-2493(2020).

    [20] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. //Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 21-37(2016).

    [21] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. (2018-05-08)[2021-05-02]. https://arxiv.org/abs/1804.02767

    [22] Girshick R, Donahue J, Darrell T et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 142-158(2016). http://arxiv.org/abs/1605.06409

    [23] Haque M F, Kang D S. Multi scale object detection based on single shot multibox detector with feature fusion and inception network[J]. The Journal of Korean Institute of Information Technology, 16, 93-100(2018).

    [24] Jia S M, Diao C T, Zhang G L et al. Object detection based on the improved single shot MultiBox detector[J]. Journal of Physics: Conference Series, 1187, 042041(2019).

    [25] Cao G M, Xie X M, Yang W Z et al. Feature-fused SSD: fast detection for small objects[J]. Proceedings of SPIE, 10615, 106151E(2018).

    Guowei Yang, Nan Zhou, Min Yang, Yongshuai Zhang, Yizhong Wang. Automatic Weld Tracking Based on Convolution Neural Network and Correlation Filter[J]. Chinese Journal of Lasers, 2021, 48(22): 2202011
    Download Citation