[2] SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986,34(3):276-280. doi:10.1109/TAP.1986.1143830.
[3] HAARDT M, NOSSEK J A. Unitary ESPRIT: how to obtain increased estimation accuracy with a reduced computational burden[J]. IEEE Transactions on Signal Processing, 1995,43(5):1232-1242. doi:10.1109/78.382406.
[4] OTTERSTEN B,VIBERG M,KAILATH T. Analysis of subspace fitting and ML techniques for parameter estimation from sensor array data[J]. IEEE Transactions on Signal Processing, 1992,40(3):590-600. doi:10.1109/78.120802.
[8] LIU Sheng,YANG Lisheng,LI Dong,et al. Subspace extension algorithm for 2D DOA estimation with L-shaped sparse array[J]. Multidimensional Systems and Signal Processing, 2017,28(1):315-327. doi:10.1007/s11045-016-0406-3.
[10] ZHANG Dong, ZHANG Yongshun, ZHENG Guimei, et al. Two-dimensional direction of arrival estimation for coprime planar arrays via polynomial root finding technique[J]. IEEE Access, 2018(6):19540-19549. doi:10.1109/ACCESS.2018.2821919.
[11] LONKENG A D, ZHUANG Jie. Two-dimensional DOA estimation using arbitrary arrays for massive MIMO systems[J]. International Journal of Antennas and Propagation, 2017(2017):6794920. doi:10.1155/2017/6794920.
[16] WENG Zhiyuan,DJURIC P M. A search-free DOA estimation algorithm for coprime arrays[J]. Digital Signal Processing, 2014(24):27-33. doi:10.1016/j.dsp.2013.10.005.
[18] GU Jianfeng, WEI Ping. Joint SVD of two cross-correlation matrices to achieve automatic pairing in 2-D angle estimation problems[J]. IEEE Antennas and Wireless Propagation Letters, 2007(6):553-556. doi:10.1109/LAWP.2007.907913.
[19] KIKUCHI S,TSUJI H, SANO A. Pair-matching method for estimating 2-D angle of arrival with a cross-correlation matrix[J]. IEEE Antennas and Wireless Propagation Letters, 2006(5):35-40. doi:10.1109/LAWP.2005.863610.