• Frontiers of Optoelectronics
  • Vol. 6, Issue 1, 46 (2013)
Zhengxuan LI, Lilin YI*, and Weisheng HU
Author Affiliations
  • The State Key Lab of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240 China
  • show less
    DOI: 10.1007/s12200-012-0305-7 Cite this Article
    Zhengxuan LI, Lilin YI, Weisheng HU. Key technologies and system proposals of TWDM-PON[J]. Frontiers of Optoelectronics, 2013, 6(1): 46 Copy Citation Text show less
    References

    [1] Wong E. Next-generation broadband access networks and technologies. Journal of Lightwave Technology, 2012, 30(4): 597-608

    [2] Vetter P. Next generation optical access technologies. In: Proceedings of European Conference and Exhibition on Optical Communication. 2012, Tu.3.G

    [3] Effenberger F. XG-PON1 versus NG-PON2: Which one will win In: Proceedings of European Conference and Exhibition on Optical Communication. 2012, Tu.4.B

    [4] Harstead E, van Veen D, Vetter P. Technologies for NGPON2: Why I think 40 G TDM PON (XLG-PON) is the clear winner. In: Proceedings of Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference. 2012

    [5] Yu J J, Jia Z S, Ji P N, Wang T. 40-Gb/s wavelength-divisionmultiplexing passive optical network with centralized lightwave source. In: Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference. 2008, OTuH8

    [6] Luo Y, Zhou X, Effenberger F, Yan X, Peng G, Qian Y, Ma Y. Time and wavelength division multiplexed passive optical network (TWDM-PON) for next generation pon stage 2 (NG-PON2). Journal of Lightwave Technology, 2012, (99): 1-6

    [7] Liu B, Zhang L J, Xin X J, Yu J J. Constellation-masked secure communication technique for OFDM-PON. Optics Express, 2012, 20(22): 25161-25168

    [8] Shin D J, Keh Y C, Kwon J W, Lee E H, Lee J K, Park M K, Park J W, Oh Y K, Kim SW, Yun I K, Shin H C, Heo D, Lee J S, Shin H S, Kim H S, Park S B, Jung D K, Hwang S, Oh Y J, Jang D H, Shim C S. Low-cost WDM-PON with colorless bidirectional transceivers. Journal of Lightwave Technology, 2006, 24(1): 158-165

    [9] Lang R. Injection locking properties of a semiconductor laser. IEEE Journal of Quantum Electronics, 1982, 18(6): 976-983

    [10] Spiekman L. Active devices in passive optical networks. In: Proceedings of Optical Fiber Communication Conference. 2012, OM2I.4

    [11] Attygalle M,Wen Y J, Shankar J, Nirmalathas A, Cheng X,Wang Y. Increasing upstream capacity in TDM-PON with multiplewavelength transmission using Fabry-Perot laser diodes. Optics Express, 2007, 15(16): 10247-10252

    [12] Chan L, Chan C, Tong D, Tong F, Chen L. Upstream traffic transmitter using injection-locked Fabry-Perot laser diode as modulator for WDM access networks. Electronics Letters, 2002, 38(1): 43-45

    [13] Zhu M, Xiao S, Zhou Z, Guo W, Yi L, Bi M, Hu W, Geller B. An upstream multi-wavelength shared PON based on tunable selfseeding Fabry-Pérot laser diode for upstream capacity upgrade and wavelength multiplexing. Optics Express, 2011, 19(9): 8000-8010

    [14] Lee W, Park M Y, Cho S H, Lee J, Kim C, Jeong G, Kim B W. Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers. IEEE Photonics Technology Letters, 2005, 17(11): 2460-2462

    [15] Li Z, Yi L, Zhang Y, Xiao S, Hu W. Upstream multi-wavelength shared TDM-PON using RSOA based directly modulated tunable fiber ring laser. In: Proceedings of Communications and Photonics Conference and Exhibition. 2011, 1-6

    [16] Cho K Y, Lee Y J, Choi H Y, Murakami A, Agata A, Takushima Y, Chung Y C. Effects of reflection in RSOA-based WDM PON utilizing remodulation technique. Journal of Lightwave Technology, 2009, 27(10): 1286-1295

    [17] Lin Z R, Liu C K, Jhang Y J, Keiser G. Tunable directly modulated fiber ring laser using a reflective semiconductor optical amplifier for WDM access networks. Optics Express, 2010, 18(17): 17610-17619

    [18] de Valicourt G, Make D, Fortin C, Enard A, Van Dijk F, Brenot R. 10 Gbit/s modulation of reflective SOA without any electronic processing. In: Proceedings of Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference. 2011, OThT2

    [19] Cho K, Choi B, Takushima Y, Chung Y. 25.78-Gb/s operation of RSOA for next-generation optical access networks. IEEE Photonics Technology Letters, 2011, 23(8): 495-497

    [20] Cho K Y, Takushima Y, Chung Y C. Demonstration of 11-Gb/s, 20-km reach WDM PON using directly-modulated RSOA with 4-ary PAM signal. In: Proceedings of Optical Fiber Communication Conference. 2010, OWG1

    [21] Omella M, Polo V, Lazaro J, Schrenk B, Prat J. 10 Gb/s RSOA transmission by direct duobinary modulation. In: Proceedings of 34th European Conference on Optical Communication. 2008, Tu.3.E.4

    [22] Kim H. 10-Gb/s operation of RSOA using a delay interferometer. IEEE Photonics Technology Letters ,2010, 22(18): 1379-1381

    [23] Girault G, Bramerie L, Vaudel O, Lobo S, Besnard P, Joindot M, Simon J C, Kazmierski C, Dupuis N, Garreau A. 10 Gbit/s PON demonstration using a REAM-SOA in a bidirectional fiber configuration up to 25 km SMF. In: Proceedings of 34th European Conference on Optical Communication. 2008, P.6.08

    [24] Papagiannakis I, Klonidis D, Birbas A N, Kikidis J, Tomkos I. Performance improvement of low-cost 2.5-Gb/s rated DML sources operated at 10 Gb/s. IEEE Photonics Technology Letters, 2008, 20(23): 1983-1985

    [25] Liu Y R, Davies A R, Ingham J D, Penty R V, White I H. Uncooled DBR laser directly modulated at 3.125 Gb/s as athermal transmitter for low-cost WDM systems. IEEE Photonics Technology Letters, 2005, 17(10): 2026-2028

    [26] Ossieur P, Antony C, Naughton A, Clarke A M, Krimmel H G, Yin X, Qiu X Z, Ford C, Borghesani A, Moodie D, Poustie A, Wyatt R, Harmon B, Lealman I, Maxwell G, Rogers D, Smith D W, Smolorz S, Rohde H, Nesset D, Davey R P, Townsend P D. Demonstration of a 32×512 Split, 100 km reach, 2×32×10 Gb/s hybrid DWDMTDMA PON using tunable external cavity lasers in the ONUs. Journal of Lightwave Technology, 2011, 29(24): 3705-3718

    [27] Wei F, Sun Y, Chen D, Xin G, Ye Q, Cai H, Qu R. Tunable external cavity diode laser with a PLZT electrooptic ceramic deflector. IEEE Photonics Technology Letters, 2011, 23(5): 296-298

    [28] Zheng J, Ge C, Wagner C, Meng L, Cunningham B, Eden J. Optically tunable ring external-cavity laser. In: Proceedings of Photonics Conference (PHO). 2011, 644-645

    [29] Hu T,WangW J, Qiu C, Yu P, Qiu H Y, Zhao Y, Jiang X Q, Yang J Y. Thermally tunable filters based on third-order microring resonators for WDM applications. IEEE Photonics Technology Letters, 2012, 24(6): 524-526

    [30] Iodice M, Cocorullo G, Della Corte F, Rendina I. Silicon Fabry-Perot filter for WDM systems channels monitoring. Optics Communications, 2000, 183(5-6): 415-418

    [31] Domash L, Wu M, Nemchuk N, Ma E. Tunable and switchable multiple-cavity thin film filters. Journal of Lightwave Technology, 2004, 22(1): 126-135

    [32] Lequime M, Parmentier R, Lemarchand F, Amra C. Toward tunable thin-film filters for wavelength division multiplexing applications. Applied Optics, 2002, 41(16): 3277-3284

    [33] Goh C S, Set S Y, Kikuchi K.Widely tunable optical filters based on fiber Bragg gratings. IEEE Photonics Technology Letters, 2002, 14(9): 1306-1308

    [34] Li Z, Yi L, Zhang Y, Dong Y, Xiao S, Hu W. Compatible TDM/WDM PON using a single tunable optical filter for both downstream wavelength selection and upstream wavelength generation. IEEE Photonics Technology Letters, 2012, 24(10): 797-799

    [35] Yi L, Li Z, Dong Y, Xiao S, Hu W. 80/10 Gb/s downstream/upstream capacity multi-wavelength TDM-PON. In: Proceedings of 8th International Symposium on Communication Systems Networks & Digital Signal Processing (CSNDSP). 2012, 1-4

    [36] Li Z, Yi L, Zhang Y, Dong Y, Xiao S, Hu W. Mitigation of reflection-induced crosstalk in multi-wavelength TDM-PON using spectral red-shifted, tunable fiber ring laser based upstream source. In: Proceedings of Optical Fiber Communication Conference. 2012, OM2I.2

    [37] Yi L, Li Z, Dong Y, Xiao S, Chen J, Hu W. Upstream capacity upgrade in TDM-PON using RSOA based tunable fiber ring laser. Optics Express, 2012, 20(9): 10416-10425

    [38] Li Z, Yi L, Bi M, Li J, He H, Yang X , Hu W. Experimental demonstration of a symmetric 40-Gb/s TWDM-PON. In: Proceedings of Optical Fiber Communication Conference. 2013, NTh4F.3 (accepted)

    CLP Journals

    [1] Waqas A. Imtiaz, Yousaf Khan, Affaq Qamar, Jehanzeb Khan, Noaman Ahmed Khan. Power budget analysis of dual/single feeder fiber WDMPON[J]. Optoelectronics Letters, 2014, 10(2): 137

    Zhengxuan LI, Lilin YI, Weisheng HU. Key technologies and system proposals of TWDM-PON[J]. Frontiers of Optoelectronics, 2013, 6(1): 46
    Download Citation