• Frontiers of Optoelectronics
  • Vol. 8, Issue 3, 282 (2015)
Taotao DING1, Yu TIAN2, Jiangnan DAI1, and Changqing CHEN1、*
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2School of Physics and Information Engineering, Jianghan University, Wuhan 430056, China
  • show less
    DOI: 10.1007/s12200-015-0529-4 Cite this Article
    Taotao DING, Yu TIAN, Jiangnan DAI, Changqing CHEN. Building one-dimensional Bi2S3 nanorods as enhanced photoresponding materials for photodetectors[J]. Frontiers of Optoelectronics, 2015, 8(3): 282 Copy Citation Text show less
    References

    [1] Chen Y C, Cao T, Chen C, Pedramrazi Z, Haberer D, de Oteyza D G, Fischer F R, Louie S G, Crommie M F. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nature Nanotechnology, 2015, 10(2): 156–160

    [2] Rao P M, Cai L, Liu C, Cho I S, Lee C H, Weisse J M, Yang P, Zheng X. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Letters, 2014, 14(2): 1099–1105

    [3] Peng S, Li L, Wu H B, Madhavi S, Lou X W. Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Advanced Energy Materials, 2015, 5(2): 1401172

    [4] Tan C, Qi X, Huang X, Yang J, Zheng B, An Z, Chen R,Wei J, Tang B Z, Huang W, Zhang H. Single-layer transition metal dichalcogenide nanosheet-assisted assembly of aggregation-induced emission molecules to form organic nanosheets with enhanced fluorescence. Advanced Materials, 2014, 26(11): 1735–1739

    [5] Huang X, Yu H, Chen J, Lu Z, Yazami R, Hng H H. Ultrahigh rate capabilities of lithium-ion batteries from 3D ordered hierarchically porous electrodes with entrapped active nanoparticles configuration. Advanced Materials, 2014, 26(8): 1296–1303

    [6] Giri A K, Pal P, Ananthakumar R, Jayachandran M, Mahanty S, Panda A B. 3D hierarchically assembled porous wrinkled-paper-like structure of ZnCo2O4 and Co-ZnO@C as anode materials for lithium-ion batteries. Crystal Growth & Design, 2014, 14(7): 3352– 3359

    [7] Cheng C, Ren W, Zhang H. 3D TiO2/SnO2 hierarchically branched nanowires on transparent FTO substrate as photoanode for efficient water splitting. Nano Energy, 2014, 5: 132–138

    [8] Choy J H, Jang E S, Won J H, Chung J H, Jang D J, Kim Y W. Soft solution route to directionally grown ZnOnanorodarrays on Si wafer; room-temperature ultraviolet laser. Advanced Materials, 2003, 15(22): 1911–1914

    [9] Huang H, Pan L, Lim C K, Gong H, Guo J, Tse M S, Tan O K. Hydrothermal growth of TiO2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells. Small, 2013, 9(18): 3153–3160

    [10] Liao J Y, Lei B X, Chen H Y, Kuang D B, Su C Y. Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Tifoil substrate for efficient flexible dye-sensitized solar cells. Energy & Environmental Science, 2012, 5(2): 5750–5757

    [11] Guo W, Xu C, Wang X, Wang S H, Pan C, Lin C, Wang Z L. Rectangular bunched rutile TiO2 nanorodarrays grown on carbon fiber for dye-sensitized solar cells. Journal of the American Chemical Society, 2012, 134(9): 4437–4441

    [12] Tang Z R, Li F, Zhang Y, Fu X, Xu Y J. Composites of titanatenanotube and carbon nanotube as photocatalyst with high mineralization ratio for gas-phase degradation of volatile aromatic pollutant. Journal of Physical Chemistry C, 2011, 115(16): 7880– 7886

    [13] Jiang J, Li Y, Liu J, Huang X. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale, 2011, 3(1): 45–58

    [14] Wang Z L, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242–246

    [15] Martinez L, Bernechea M, de Arquer F P G, Konstantatos G. Near IR-sensitive, non-toxic, polymer/nanocrystalsolar cells employing Bi2S3 as the electron acceptor. Advanced Energy Materials, 2011, 1 (6): 1029–1035

    [16] Xiao G, Dong Q,Wang Y, Sui Y, Ning J, Liu Z, Tian W, Liu B, Zou G, Zou B. One-step solution synthesis of bismuth sulfide (Bi2S3) with various hierarchical architectures and their photoresponse properties. RSC Advances, 2012, 2(1): 234–240

    [17] Li Y,Wei F, Ma Y, Zhang H, Gao Z, Dai L, Qin G. Selected-control hydrothermal synthesis and photoresponse properties of Bi2S3micro/ nanocrystals. CryEngComm, 2013, 15(33): 6611–6616

    [18] Konstantatos G, Levina L, Tang J, Sargent E H. Sensitive solutionprocessed Bi2S3 nanocrystalline photodetectors. Nano Letters, 2008, 8(11): 4002–4006

    [19] Yao K, Gong W W, Hu Y F, Liang X L, Chen Q, Peng L M. Individual Bi2S3 nanowire-based room-temperature H2 sensor. Journal of Physical Chemistry C, 2008, 112(23): 8721–8724

    [20] Bao H, Li C M, Cui X, Gan Y, Song Q, Guo J. Synthesis of a highly ordered single-crystalline Bi2S3 nanowire array and its metal/ semiconductor/metal back-to-back Schottky diode. Small, 2008, 4 (8): 1125–1129

    [21] Ma J, Liu Z, Lian J, Duan X, Kim T, Peng P, Liu X, Chen Q, Yao G, Zheng W. Ionic liquids-assisted synthesis and electrochemical properties of Bi2S3 nanostructures. CrystEngComm, 2011, 13(8): 3072–3079

    [22] Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R. An X-ray computed tomography imaging agent based on longcirculating bismuth sulphide nanoparticles. Nature Materials, 2006, 5(2): 118–122

    [23] Schricker A D, Sigman M B Jr, Korgel B A. Electrical transport, Meyer–Neldel rule and oxygen sensitivity of Bi2S3 nanowires. Nanotechnology, 2005, 16(7): S508–S513

    [24] Liao X H, Wang H, Zhu J J, Chen H Y. Preparation of Bi2S3 nanorods by microwave irradiation. Materials Research Bulletin, 2001, 36(13–14): 2339–2346

    [25] Tang C J, Wang G Z, Wang H Q, Zhang Y X, Li G H. Facile synthesis of Bi2S3 nanowire arrays. Materials Letters, 2008, 62(21– 22): 3663–3665

    [26] Tang C, Wang C, Su F, Zang C, Yang Y, Zong Z, Zhang Y. Controlled synthesis of urchin-like Bi2S3 via hydrothermal method. Solid State Sciences, 2010, 12(8): 1352–1356

    [27] Lu F, Li R, Li Y, Huo N, Yang J, Li Y, Li B, Yang S, Wei Z, Li J . Improving the field-effect performance of Bi2S3 single nanowires by an asymmetric device fabrication. A European Journal of Chemical Physics and Physical Chemistry, 2015, 16(1): 99–103

    [28] Andzane J, Kunakova G, Varghese J, Holmes J D, Erts D. Photoconductive properties of Bi2S3 nanowires. Journal of Applied Physics, 2015, 117(6): 064305

    [29] Wang H, Zhu J J, Zhu JM, Chen H Y. Sonochemical method for the preparation of bismuth sulfide nanorods. Journal of Physical Chemistry B, 2002, 106(15): 3848–3854

    [30] Wei F, Zhang J, Wang L, Zhang Z K. Solvothermal growth of single-crystal bismuth sulfide nanorods using bismuth particles as source material. Crystal Growth & Design, 2006, 6(8): 1942– 1944

    [31] Peng X S, Meng G W, Zhang J, Zhao L X, Wang X F, Wang Y W, Zhang L D. Electrochemical fabrication of ordered Bi2S3 nanowire arrays. Journal of Physics D, Applied Physics, 2001, 34(22): 3224– 3228

    [32] Zhang B, Ye X, Hou W, Zhao Y, Xie Y. Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. Journal of Physical Chemistry B, 2006, 110(18): 8978–8985

    [33] Wang Y, Chen J, Wang P, Chen L, Chen Y B, Wu L M. Syntheses, growth mechanism, and optical properties of [001] growing Bi2S3 nanorods. Journal of Physical Chemistry C, 2009, 113(36): 16009– 16014

    [34] Kind H, Yan H, Messer B, Law M, Yang P. Nanowire ultraviolet photodetectors and optical switches. Advanced Materials, 2002, 14 (2): 158–160

    Taotao DING, Yu TIAN, Jiangnan DAI, Changqing CHEN. Building one-dimensional Bi2S3 nanorods as enhanced photoresponding materials for photodetectors[J]. Frontiers of Optoelectronics, 2015, 8(3): 282
    Download Citation