• Semiconductor Optoelectronics
  • Vol. 42, Issue 2, 252 (2021)
LIU Qingdong1, CHEN Lin1,2, TAO Zhikuo1, and XIU Xiangqian2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2021.02.018 Cite this Article
    LIU Qingdong, CHEN Lin, TAO Zhikuo, XIU Xiangqian. Simulation and Optimization of HVPE Growth α-Ga2O3 with Dual-Reaction Source Gases[J]. Semiconductor Optoelectronics, 2021, 42(2): 252 Copy Citation Text show less
    References

    [4] Oshima Y, Villora E G, Shimamura K, et al. Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0001) substrates by halide vapor phase epitaxy[J]. J. Crystal Growth, 2015, 410: 53-58.

    [5] Mohamed M, Irmscher K, Janowitz C, et al. Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3[J]. Appl. Phys. Lett., 2012, 101(13): 132106.

    [6] Yang J, Ahn S, Ren F, et al. High reverse breakdown voltage schottky rectifiers without edge termination on Ga2O3[J]. Appl. Phys. Lett., 2017, 110(19): 192101.

    [7] Sasaki K, Kuramata A, Masui T, et al. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy[J]. Appl. Phys. Express, 2012, 5(3): 035502.

    [8] Oshima T, Okuno T, Arai N, et al. Vertical solar-blind deep-ultraviolet schottky photodetectors based on β-Ga2O3 substrates[J]. Appl. Phys. Express, 2008, 1(1): 011202-3.

    [9] Rustum R, Hill V G, Osborn E F. Polymorphism of Ga2O3 and the system Ga2O3-H2O[J]. J. of the American Chemical Society, 1952, 74(3): 719-722.

    [10] Son H, Jeon D W. Optimization of the growth temperature of α-Ga2O3 epilayers grown by halide vapor phase epitaxy[J]. J. of Alloys and Compounds, 2019, 773: 631-635.

    [11] Oshim Y, Villora E G, Shimamura K. Halide vapor phase epitaxy of twin-free α-Ga2O3 on sapphire (0001) substrates[J]. Appl. Phys. Lett., 2015, 8(5): 055501.

    [12] Xiu Xiangqian, Zhang Liying, Li Yuewen, et al. Application of halide vapor phase epitaxy for the growth of ultrawide band gap Ga2O3[J]. J. of Semiconductors, 2019, 40: 011805.

    [13] Masaya O, Rie T, Hitoshi K, et al. Schottky barrier diodes of corundum-structured gallium oxide showing on-resistance of 0.1mΩ·cm2 grown by mist epitaxy[J]. Appl. Phys. Express, 2016, 9(2): 021101.

    [14] Shinohara D, Fujita S. Heteroepitaxy of corundum structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition[J]. Jap. J. of Appl. Phys., 2008, 47(9R): 7311.

    [15] Kawaharamura T, Dang G T, Furuta M. Successful growth of conductive highly crystalline Sn-doped α-Ga2O3 thin films by fine-channel mist chemical vapor deposition[J]. Jap. J. of Appl. Phys., 2012, 51(4): 0207.

    [16] Takayoshi O, Takeya O, Shizuo F. Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep ultraviolet photodetector[J]. Jap. J. of Appl. Phys., 2007, 46(11): 7217-7220.

    [17] Yao Yao, Okur S, Lyle L A M, et al. Growth and characterization of α-, β- and ε-phases of Ga2O3 using MOCVD and HVPE techniques[J]. Materials Research Lett., 2018, 6(5): 268-275.

    [19] Xiong Zening, Xiu Xiangqian, Li Yuewen, et al. Growth of β-Ga2O3 films on sapphire by hydride vapor phase epitaxy[J]. Chinese Phys. Lett., 2018, 35(5): 162-164.

    [20] Yamane T, Hanaoka K, Murakami H, et al. Tri-halide vapor phase epitaxy of GaN using GaCl3 gas as a group Ⅲ precursor[J]. Physica Status Solidi., 2011, 8(5): 1471-1474.

    [21] Murakami H, Takekawa N, Shiono A, et al. Tri-halide vapor phase epitaxy of thick GaN using gaseous GaCl3 precursor[J]. J. of Crystal Growth, 2016, 456: 140-144.