• Acta Physica Sinica
  • Vol. 69, Issue 1, 010205-1 (2020)
Xiao-Yong Wen* and Hao-Tian Wang
DOI: 10.7498/aps.69.20191235 Cite this Article
Xiao-Yong Wen, Hao-Tian Wang. Dynamics of localized wave solutions for a higher-order Ablowitz-Ladik equation[J]. Acta Physica Sinica, 2020, 69(1): 010205-1 Copy Citation Text show less

Abstract

It is an important research topic to study diverse local wave interaction phenomena in nonlinear evolution equations, especially for the semi-discrete nonlinear lattice equations, there is little work on their diverse local wave interaction solutions due to the complexity and difficulty of research. In this paper, a semi-discrete higher-order Ablowitz-Ladik equation is investigated via the generalized $(M, N-M)$-fold Darboux transformation. With the aid of symbolic computation, diverse types of localized wave solutions are obtained starting from constant and plane wave seed background. Particularly, for the case $M=N$, the generalized $(M, N-M)$-fold Darboux transformation may reduce to the N-fold Darboux transformation which can be used to derive multi-soliton solutions from constant seed background and breather solutions from plane wave seed background, respectively. For the case $M=1$, the generalized $(M, N-M)$-fold Darboux transformation reduce to the generalized $(1, N-1)$-fold one which can be used to obtain rogue wave solutions from plane wave seed background. For the case $M=2$, the generalized $(M, N-M)$-fold Darboux transformation reduce to the generalized $(2, N-2)$-fold one which can be used to give mixed interaction solutions of one-breather and first-order rogue wave from plane wave seed background. To study the propagation characteristics of such localized waves, the numerical simulations are used to explore the dynamical stability of such obtained solutions. Results obtained in the present work may be used to explain related physical phenomena in nonlinear optics and relevant fields.
$rn,t=i(1σ|rn|2)[σrn(rn12+rn+12)+σrn(rn1rn+1+rn1rn+1)rn2(1σ|rn1|2)rn+2(1σ|rn+1|2)+2(rn1+rn+1)],$(1)

View in Article

$ E{{{\varphi}}_{{{n}}}} = {{{U}}_{{{n}}}}{{{\varphi}} _{{{n}}}},\ \ \ \ {{{\varphi}} _{{{n}},{{t}}}} = {{{V}}_{{{n}}}}{{{\varphi}} _{{{n}}}}, $(2)

View in Article

$ {{{U}}_{{n}}} = \left(\!\!\!{λ2λrnσλrn1}\!\!\! \right),\;\;\;{{{V}}_{{n}}} = \left(\!\!\!{V11V12V21V22}\!\!\!\right), $()

View in Article

$ V11=i2λ4+i(1+σrnrn1)λ2+σirn+1rn1(1σ|rn|2)+iσrnrn2(1σ|rn1|2)irn2rn12i2λ4+i(1+σrn1rn)λ2,V12=i(σ|rn|2rn+1+σrn2rn1rn+1+2rn)λirnλ3+irn1λ3+i(rn2σrn12rnσrn1rn1rn22rn1)λ,V21=i(σrn2+rn12rn+|rn1|2rn2+2σrn1)λσirn1λ3+iσrnλ3+i(σrn+1rn2rn1|rn|2rn+12σrn)λ,V22=i2λ4i(1+σrnrn1)λ2iσrn1rn+1(1σ|rn|2)iσrn2rn(1σ|rn1|2)+irn2rn12+i2λ4i(1+σrn1rn)λ2, $()

View in Article

$ {\widetilde{\varphi}_{n}} = {T_n}{\varphi_{n}}, $(3)

View in Article

$ {\widetilde{{{\varphi}}}_{{{n}}+1}} = {{\widetilde{U}_{n}}}{{\widetilde{\varphi}_{n}}},\quad {\widetilde{{{\varphi}}}_{{{n}},{{t}}}} = {\widetilde{{{V}}}_{{{n}}}}{\widetilde{{{\varphi}}}_{{{n}}}}, $(4)

View in Article

$U~n=Tn+1UnTn1,V~n=(Tn,t+TnVn)Tn1,$(5)

View in Article

$ {{{T}}_{{n}}} \!=\! \left(\!\!\!\!\!λ2N+j=1Nan(2j2)λ2j2j=1Nbn(2j1)λ2j1σj=1Nbn(2N2j+1)λ2j11+j=1Nan(2N2j)λ2j\!\!\!\!\!\right), $(6)

View in Article

$ \left\{ Tn(0)(λi)φn(0)(λi)=0,Tn(0)(λi)φn(1)(λi)+Tn(1)(λi)φn(0)(λi)=0,,j=0miTn(j)(λi)φn(mij)(λi)=0, \right. $(7)

View in Article

$ \widetilde{r}_n = b^{(1)}_{n+1}+r_n a^{(0)}_{n+1}, $(8)

View in Article

$ ΔNϵ=det([Δ(1),Δ(2),...,Δ(n)]T),Δ(i)=(Δj,s(i))2(mi+1)×2N,$()

View in Article

$ \varDelta^{(i)}_{j,s} = {k=0j1C2N2skλi(2N2sk)ϕi(j1k),1jmi+1, 1sN,k=0j1C4N2s+1kλi(4N2s+1k)ψi(j1k),1jmi+1, N+1s2N,k=0j(N+1)C2N2skλi2N2skψi(j1k),mi+2j2(mi+1), 1sN,σk=0j(N+1)C4N2s+1kλi2s1+kϕi(jN1k),mi+2j2(mi+1), N+1s2N,$()

View in Article

$ Extra \left or missing \right \right) = \left( C1τ+neρ+t+δ(ε)+C2τneρtδ(ε)e2i(c2+1)(3c21)tc[C1(λ2+τ+n)τ+neρ+τ+δ(ε)+C2(λ2+τn)τneρtδ(ε)] \right), \end{array} $()

View in Article

$ τ±=λ22+12±12λ44λ4c22λ2+1,ρ±=i(c2+1)(6c22)λ4±i(λ21)(2λ2c2+λ4+1)λ44λ2c22λ2+12λ4,δ(ε)=4λ2c2+λ42λ2+1ω=0N(eω+idω)ε2k, $()

View in Article

$ \widetilde{r}_n = -\frac{\lambda_1(|\lambda_1|^4-1){\rm e}^{\eta_1-\eta^*_1}}{2 \lambda^{*2}_1|\lambda_1|} \rm sech(\eta_1+\eta^*_1+\ln|\lambda_1|), $(9)

View in Article

$ \dfrac{ {\rm i}\left(\!-\dfrac{\lambda^4_1}{2}\!+\!\lambda^2_1\!-\!\dfrac{1}{2\lambda^4_1}\!+\!\dfrac{1}{\lambda^2_1}\!+\!\dfrac{\lambda^{*4}_1}{2}\!-\!\lambda^{*2}_1\!+\!\dfrac{1}{2\lambda^{*4}_1}\!-\!\dfrac{1}{\lambda^{*2}_1}\!\right)}{2\ln|\lambda_1 |},$()

View in Article

$ \widetilde{r}_n = \frac{3715200{\rm i} t+110592n^2+11232675t^2+294912n-61440}{16384(3n+4)^2+14976900t^2+65536}{\rm e}^{-\frac{275{\rm i}}{128}t},$(10)

View in Article

Xiao-Yong Wen, Hao-Tian Wang. Dynamics of localized wave solutions for a higher-order Ablowitz-Ladik equation[J]. Acta Physica Sinica, 2020, 69(1): 010205-1
Download Citation