[1] WANG Jiaying, DONG Duo. Technical and safe development features of modern research reactor[J]. Journal of Tsinghua University (Science and Technology), 38, 117-118(1998).
[3] ZHONG Jie, CHEN Wei, YANG Jun et al. The status and future applications of nuclear research reactors[J]. Physics, 30, 693-698(2001).
[4] Diakov A S. Prospects for conversion of HEU-fueled research reactors in Russia[J]. Science & Global Security, 22, 166-187(2014).
[5] Diakov A S. On Conversion of Research Reactors in Russia[R](2013).
[6] Tretiyakov I T. The status of research reactors in Russia and prospects for their development[J]. International Journal of Nuclear Governance, Economy and Ecology, 2, 399(2009).
[7] Bortolussi S, Pinto J M, Thorp S I et al. Simulation of the neutron flux in the irradiation facility at RA-3 reactor[J]. Applied Radiation and Isotopes, 69, 1924-1927(2011).
[8] Miller M, Quintana J, Ojeda J et al. New irradiation facility for biomedical applications at the RA-3 reactor thermal column[J]. Applied Radiation and Isotopes, 67, S226-S229(2009).
[9] Larrieu O C, Blaumann H. Refurbishment and modernization of the RA-6 research reactor[R](2009).
[10] AlZaben Y. Safety parameters validation after the commissioning of RA-6 core conversion to LEU fuel[C], 7-15(2013).
[11] Klein J, Medel J, Daie J et al. An overview of the RECH-1 reactor conversion[C], 1-5(2003).
[12] Molina F, Aguilera P, Romero-Barrientos J et al. Energy distribution of the neutron flux measurements at the Chilean Reactor RECH-1 using multi-foil neutron activation and the Expectation Maximization unfolding algorithm[J]. Applied Radiation and Isotopes, 129, 28-34(2017).
[13] Singh T, Pandey P, Mazumdar T et al. Physics design of 2 MW upgraded Apsara research reactor[J]. Annals of Nuclear Energy, 60, 141-156(2013).
[14] Sasidharan K, Khatri D C, Singh K et al. Refurbishment and core conversion of the apsara reactor[J]. Nuclear Engineering and Design, 236, 784-795(2006).
[15] Bagheri S, Khalafi H. The effect of central flux trap on-line sampling on Tehran Research Reactor (TRR) core safety parameters[J]. Nuclear Engineering and Design, 415, 112742(2023).
[16] Kim K O, Jun B J, Lee B et al. Comparison of first criticality prediction and experiment of the Jordan research and training reactor (JRTR)[J]. Nuclear Engineering and Technology, 52, 14-18(2020).
[17] Sondos M. Neutron-physical and radiation characteristics of different low enrichment fuels (thorium and uranium) in a proposed JRTR research reactor[J]. Jordan Journal of Physics, 16, 91-98(2023).
[18] Shaimerdenov A, Sairanbayev D, Gizatulin S et al. WWR-K reactor LEU core design optimization for improving the experimental characteristics[J]. Annals of Nuclear Energy, 195, 110174(2024).
[19] Koltochnik S N, Shaimerdenov A A. Safety analysis for the WWR-K research reactor converted to LEU fuel[J]. Eurasian Journal of Physics and Functional Materials, 3, 204-218(2019).
[20] Leege P D, Gibcus H, Reitsma F. Reactivity effects of a research reactor (hor) during the transition of a heu to leu core[C], 115-129(2002).
[21] Mahmood T, Bokhari I H, Iqbal M et al. Performance evaluation/analysis of Pakistan Research Reactor-1 (PARR-1) current core configuration[J]. Progress in Nuclear Energy, 53, 729-735(2011).
[22] Mahmood T, Pervez S, Iqbal M. Neutronic analysis for core conversion (HEU–LEU) of Pakistan research reactor-2 (PARR-2)[J]. Annals of Nuclear Energy, 35, 1440-1446(2008).
[23] Villarino E A, Padilla A G. Core Performance improvement using U3Si2-Al fuel in the RP-10 modernization[C], 33-39(2011).
[24] Villarino E A. Core performance improvements using high density fuel in research reactors[C], 219-227(2013).
[25] Mo S C, Smith R S, Matos J E et al. Modification of the RINSC LEU core to increase fluxes for BNCT study[C], 71-79(2000).
[26] Tehan T. The rhode island nuclear science center conversion from HEU to LEU fuel[R](2000).
[27] White J R. Cross section libraries and preliminary modeling for the reference UMLRR LEU core configuration[R](1999).
[28] White J, Byard J. Calculational support for the startup of the leu-fueled umass-Lowell research reactor[C], 96-104(2000).
[29] Iqbal Hosan M, Soner M A M, Ahmad Kabir K et al. Study on neutronic safety parameters of BAEC TRIGA research reactor[J]. Annals of Nuclear Energy, 80, 447-450(2015).
[30] Hernández F A, La Marquesa O. The Mexican TRIGA Mark-III reactor with TRIGA fuel type[C], 891-899.
[31] Moran L, Lucatero M A, Reyes A et al. Conversion of the core of the TRIGA Mark III reactor at the Mexican Nuclear Centre[R](1990).
[32] HAN Hua. Experimental study on thermal stability of dispersed fuel elements[D](2003).
[33] Meftah B, Zidi T, Bousbia-Salah A. Neutron flux optimization in irradiation channels at NUR research reactor[J]. Annals of Nuclear Energy, 33, 1164-1175(2006).
[34] Sidi-Ali K, Mokhtari O, Mazidi S. Nuclear safety operating margin using new power peaking factors for NUR nuclear research reactor[J]. Progress in Nuclear Energy, 168, 104998(2024).
[35] Mokhtari O, Mazrou H. Monte Carlo modeling of the NUR nuclear research reactor[J]. Progress in Nuclear Energy, 111, 51-64(2019).
[37] Mor I, Eldad N, Cohen M et al. Development of a CCD based thermal neutron imaging detector for the Israeli Research Reactor IRR-1 at Soreq NRC[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1012, 165632(2021).
[38] Levi I, Trahan A C, Ben-Meir K et al. Nondestructive measurements of residual 235U mass of Israeli Research Reactor-1 fuel using the Advanced Experimental Fuel Counter[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 964, 163797(2020).
[39] Caner M, Shapira M, Bettan M et al. HEU Benchmark calculations and LEU preliminary calculation for IRR-I[C], 2-11.
[40] Viggiano F, de Stefani G L, Genezini F A et al. Core reduction for increasing neutron flux and radioisotope production in the IEA-R1 research reactor[J]. Nuclear Engineering and Design, 421, 113082(2024).
[41] Hainoun A, Doval A, Umbehaun P et al. International benchmark study of advanced thermal hydraulic safety analysis codes against measurements on IEA-R1 research reactor[J]. Nuclear Engineering and Design, 280, 233-250(2014).
[42] de Stefani G L, Genezini F A, de Losada Moreira J M et al. Optimization on the core of IEA-R1 research reactor for enhance the radioisotopes production[C], 198-214(2022).
[43] Gharib M, Arkani M, Hossnirokh A. Design and application of MTR fuel assemblies in new proposed inverted mode[J]. Nuclear Engineering and Design, 240, 2981-2987(2010).
[44] dos Santos T A, Genezini F A, de Stefani G L. Optimization of IEA-R1 reactor core parameters using the particle swarm algorithm[J]. Nuclear Engineering and Design, 415, 112713(2023).
[46] SUN Rongxian, XIE Huaiying. Status and prospect of fuel development for research reactors[J]. Atomic Energy Science and Technology, 45, 847-851(2011).
[47] ZHAO Song, SONG Yue, CAI Li. Analysis of foreign uranium-molybdenum alloy fuel technology development[C], 44-49(2021).
[48] Cowherd W, Stillman J, Gahl J et al. Transition core analysis for HEU to LEU fuel conversion at the University of Missouri Research Reactor[J]. Nuclear Technology, 207, 167-181(2021).
[49] Wang G Y, Bojanowski C, Mohamed W et al. Evaluation of flow-induced plate deflection for University of Missouri research reactor low-enriched uranium fuel element[J]. Nuclear Engineering and Design, 426, 113369(2024).
[50] Brockman J D, Robertson J D. Analysis of k0 neutron activation analysis at the University of Missouri Research Reactor[J]. Applied Radiation and Isotopes, 67, 1084-1088(2009).
[51] Foyto L, Kutikkad K, McKibben J C et al. The University of Missouri Research Rreactor heu to leu conversion project status[C], 14-17.
[52] Morrell D. 2012 annual report research reactor infrastructure program[R](2012).
[53] Amin E, Shama A, Hussein H. Benchmarking of the WIMSD/CITATION deterministic code system for the neutronic calculations of TRIGA Mark-III research reactors[J]. Annals of Nuclear Energy, 66, 113-123(2014).
[54] Nacir B, Boulaich Y, Chakir E et al. Safety analysis and optimization of the core fuel reloading for the Moroccan TRIGA Mark-II reactor[J]. Annals of Nuclear Energy, 70, 312-316(2014).
[55] Mira M, El Hajjaji O, El Bardouni T et al. OpenMC-based high-fidelity model for the Moroccan TRIGA Mark II research reactor[J]. Progress in Nuclear Energy, 169, 105065(2024).
[56] LUO Anren. Recent development of research reactors[J]. Nuclear Power Engineering, 77-84(1982).
[57] ZHOU Yuan. Numerical simulation study on transient thermal hydraulic characteristics of CARR reactor[D](2015).
[58] ZHANG Luqing. The development tendency of foreign research reactors[J]. Nuclear Power Engineering, 9, 35-40(1988).
[59] ZHU Huannan. Study on design schemes of the new research reactor to be constructed in CIAE[J]. Chinese Journal of Nuclear Science and Engineering, 13, 232-239, 260(1993).
[60] Lomer W M. The flux reactor at Grenoble[J]. Physics Bulletin, 24, 718-719(1973).
[61] XIAO Shigang. Discussion of several issues in compact reactor core design[C], 10, 198-206(1998).
[62] Colvin E, Palmer T S. High-fidelity multiphysics modeling of pulsed reactor heat generation in the Annular Core Research Reactor fuel using Serpent 2[J]. Annals of Nuclear Energy, 211, 110954(2025).
[63] ZUO Yajie. Research on optimization of irradiation channel design for new swimming pool-type multifunctional research reactor[D](2023).