• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 2, 693 (2022)
YANG Zhenjia1、2、*, HE Meng3, WU Yang1, SHI Yupeng3, SUN Liang1, PAN Zhu3、4, and ZHANG Mo3、5
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • show less
    DOI: Cite this Article
    YANG Zhenjia, HE Meng, WU Yang, SHI Yupeng, SUN Liang, PAN Zhu, ZHANG Mo. Mechanical Properties and Road Performance of Slag-Fly Ash Geopolymer Stabilized Sludge[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 693 Copy Citation Text show less
    References

    [5] POURAKBAR S, HUAT B B K. Laboratory-scale model of reinforced alkali-activated agro-waste for clayey soil stabilization[J]. Advances in Civil Engineering Materials, 2017, 6(1): 20160023.

    [8] MCLELLAN B C, WILLIAMS R P, LAY J, et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement[J]. Journal of Cleaner Production, 2011, 19(9/10): 1080-1090.

    [14] PHETCHUAY C, HORPIBULSUK S, ARULRAJAH A, et al. Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer[J]. Applied Clay Science, 2016, 127/128: 134-142.

    [15] ARULRAJAH A, MOHAMMADINIA A, D’AMICO A, et al. Cement kiln dust and fly ash blends as an alternative binder for the stabilization of demolition aggregates[J]. Construction and Building Materials, 2017, 145: 218-225.

    [16] ELKHEBU A, ZAINORABIDIN A, HJ BAKAR I, et al. Alkaline activation of clayey soil using potassium hydroxide & fly ash[J]. International Journal of Integrated Engineering, 2018, 10(9): 99-104.

    [17] LATIFI N, VAHEDIFARD F, SIDDIQUA S, et al. Solidification-stabilization of heavy metal-contaminated clays using gypsum: multiscale assessment[J]. International Journal of Geomechanics, 2018, 18(11): 04018150.

    [18] MUHAMMAD N, SIDDIQUA S, LATIFI N. Solidification of subgrade materials using magnesium alkalinization: a sustainable additive for construction[J]. Journal of Materials in Civil Engineering, 2018, 30(10): 04018260.

    [20] KUMAR S, KUMAR R, MEHROTRA S P. Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer[J]. Journal of Materials Science, 2010, 45(3): 607-615.

    [21] ISMAIL I, BERNAL S A, PROVIS J L, et al. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash[J]. Cement and Concrete Composites, 2014, 45: 125-135.

    [22] KAZEMIAN A, GHOLIZADEH VAYGHAN A, RAJABIPOUR F. Quantitative assessment of parameters that affect strength development in alkali activated fly ash binders[J]. Construction and Building Materials, 2015, 93: 869-876.

    [27] REDDY M S, DINAKAR P, RAO B H. Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete[J]. Journal of Building Engineering, 2018, 20: 712-722.

    [31] WANG D X, GAO X Y, LIU X Q, et al. Strength, durability and microstructure of granulated blast furnace slag-modified magnesium oxychloride cement solidified waste sludge[J]. Journal of Cleaner Production, 2021, 292: 126072.

    [32] WANG D X, DI S J, GAO X Y, et al. Strength properties and associated mechanisms of magnesium oxychloride cement-solidified urban river sludge[J]. Construction and Building Materials, 2020, 250: 118933.

    YANG Zhenjia, HE Meng, WU Yang, SHI Yupeng, SUN Liang, PAN Zhu, ZHANG Mo. Mechanical Properties and Road Performance of Slag-Fly Ash Geopolymer Stabilized Sludge[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 693
    Download Citation