• Optics and Precision Engineering
  • Vol. 32, Issue 17, 2635 (2024)
Guolu YIN1,2,*, Jingming MA2, Shengxian JIANG3, Xin WANG2..., Yuanyin ZHANG2 and Tao ZHU1,2|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing400044, China
  • 2Key Laboratory of Optoelectronic Technology and Systems, Chongqing University (Ministry of Education), Chongqing400044, China
  • 3Chongqing Branch, Changjiang River Scientific Research Institute, Chongqing400026, China
  • show less
    DOI: 10.37188/OPE.20243217.2635 Cite this Article
    Guolu YIN, Jingming MA, Shengxian JIANG, Xin WANG, Yuanyin ZHANG, Tao ZHU. Distributed stress measurement for water pressure test of diversion steel branch pipe[J]. Optics and Precision Engineering, 2024, 32(17): 2635 Copy Citation Text show less
    References

    [1] 靳亚东, 唐修波, 赵杰君, 等. 我国抽水蓄能电站的现状及发展前景分析 [C]. 抽水蓄能电站工程建设文集2019,F, 2019.YADONGQ, XIUBOT, alZJIEJUNet.. Analysis of the current situation and development prospects of pumped storage power stations in China [C]. Proceedings of the Collection of Papers on the Construction of Pumped Storage Power Stations in2019, F, 2019. (in Chinese)

    [2] 张德强. 浅析抽水蓄能电站GIS选址与设备安装[J]. 储能科学与技术, 2022, 11(12): 4100-4101.ZHANGD Q. Analysis on GIS site selection and equipment installation of pumped storage power station[J]. Energy Storage Science and Technology, 2022, 11(12): 4100-4101.(in Chinese)

    [3] 王晓东. 梯级电站运行期水库放空经济调度研究与实践[J]. 四川水力发电, 2022, 41(2): 126-130.WANGX D. Research and practice on economic dispatching of reservoir emptying during operation period of cascade power stations[J]. Sichuan Water Power, 2022, 41(2): 126-130.(in Chinese)

    [4] 朱晨, 袁翔. 抽水蓄能电站钢岔管水压试验结构应力测试分析与评价[J]. 焊接技术, 2022, 51(11): 43-48, 114.ZHUCH, YUANX. Structural stress test analysis and evaluation of steel bifurcated pipe in pumped storage power station[J]. Welding Technology, 2022, 51(11): 43-48, 114.(in Chinese)

    [5] NB/T 35056-2015 水电站压力钢管设计规范[M]. 北京: 中国电力出版社, 2015.NB/T 35056-2015 Design Code for Steel Penstocks of Hydroelectric Stations [M]. Beijing:China Electric Power Press, 2015. (in Chinese)

    [6] 中华人民共和国住房和城乡建设部. 水电水利工程压力钢管制作安装及验收规范: GB 50766—2012[S]. 北京: 中国计划出版社, 2012.Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for manufacture installation and acceptance of steel penstocks in hydroelectric and hydraulic engineering: GB 50766—2012[S]. Beijing: China Planning Press, 2012. (in Chinese)

    [7] 廖钧, 屈刚. 国产800MPa级高强钢大HD值高压钢岔管整体运输安装施工技术应用[J]. 水电站机电技术, 2016, 39(S1): 37-41, 95.LIAOJ, QUG. Application of construction technology for integral transportation and installation of domestic 800MPa high-strength steel bifurcated pipe with high HD value[J]. Mechanical & Electrical Technique of Hydropower Station, 2016, 39(S1): 37-41, 95.(in Chinese)

    [8] 韦庆华, 余金凤, 张宪民, 等. 引水式水电站压力钢管岔管水压试验[J]. 广西水利水电, 2019(2): 10-13.WEIQ H, YUJ F, ZHANGX M, et al. Hydraulic pressure test of steel bifurcated pipe for a diversion-type hydropower station[J]. Guangxi Water Resources & Hydropower Engineering, 2019(2): 10-13.(in Chinese)

    [9] 刘蕊, 余健, 白威. 丰宁抽水蓄能电站引水钢岔管残余应力测试与研究[J]. 水电与抽水蓄能, 2020, 6(4): 110-116.LIUR, YUJ, BAIW. Test and research on residual stress of diversion steel bifurcation pipe of Fengning pumped storage power station[J]. Hydropower and Pumped Storage, 2020, 6(4): 110-116.(in Chinese)

    [10] 张一鸣, 钱玉英, 宋蕊香. 清原抽水蓄能电站引水钢岔管水压试验研究[J]. 水利水电技术(中英文), 2023, 54(S2): 67-72.ZHANGY M, QIANY Y, SONGR X. Study on hydraulic test of steel bifurcated pipe of qingyuan pumped storage power station[J]. Water Resources and Hydropower Engineering, 2023, 54(S2): 67-72.(in Chinese)

    [11] 王光军. 高强钢瓦片式凑合节制造拼装技术[J]. 技术与市场, 2022, 29(11): 82-84.WANGG J. Manufacturing and assembling technology of high strength steel tile joint[J]. Technology and Market, 2022, 29(11): 82-84.(in Chinese)

    [12] 尉婷, 龙万江, 吴冰冰, 等. 油气管道分布式光纤布里渊散射应变的仿真研究[J]. 激光与光电子学进展, 2022, 59(21): 112-116. doi: 10.3788/LOP202259.2106003WEIT, LONGW J, WUB B, et al. Simulation research on distributed optical fiber Brillouin scattering strain in oil and gas pipelines[J]. Laser & Optoelectronics Progress, 2022, 59(21): 112-116.(in Chinese). doi: 10.3788/LOP202259.2106003

    [13] 范佳铭, 黄闽南, 王一山, 等. 面向电力管廊外破监测的分布式光纤传感技术研究[J]. 光学 精密工程, 2024, 32(10): 1433-1442. doi: 10.37188/ope.20243210.1433FANJ M, HUANGM N, WANGY SH, et al. Research on distributed optical fiber sensing technology for power pipe corridor breakdown monitoring[J]. Opt. Precision Eng., 2024, 32(10): 1433-1442.(in Chinese). doi: 10.37188/ope.20243210.1433

    [14] 张旭苹, 丁哲文, 洪瑞, 等. 相位敏感光时域反射分布式光纤传感技术[J]. 光学学报, 2021, 41(1): 100-114. doi: 10.3788/aos202141.0106004ZHANGX P, DINGZH W, HONGR, et al. Phase sensitive optical time-domain reflective distributed optical fiber sensing technology[J]. Acta Optica Sinica, 2021, 41(1): 100-114.(in Chinese). doi: 10.3788/aos202141.0106004

    [15] 邢炜光, 赵赞善, 邢锰, 等. 光纤传感用于海缆扰动探测的试验研究[J]. 光学 精密工程, 2023, 31(10): 1432-1442. doi: 10.37188/ope.20233110.1432XINGW G, ZHAOZ SH, XINGM, et al. Experimental research on submarine cable disturbance detection with optical fiber sensing[J]. Opt. Precision Eng., 2023, 31(10): 1432-1442.(in Chinese). doi: 10.37188/ope.20233110.1432

    [16] Z Y DING, H H GUO, K LIU et al. Advances in distributed optical fiber sensors based on optical frequency-domain reflectometry: a review. IEEE Sensors Journal, 23, 26925-26941(2023).

    [17] M A KRAINAK, M A STEPHEN, E TROUPAKI et al. Integrated photonics for NASA applications, 2, 2019(2019).

    [18] 王宇, 肖迪, 牛洋洋, 等. 基于光频域反射仪的光纤水听器探头结构形变研究[J]. 光学学报, 2023, 43(5): 242-250. doi: 10.3788/AOS221551WANGY, XIAOD, NIUY Y, et al. Structural deformation of fiber optic hydrophone probe based on optical frequency domain reflectometry[J]. Acta Optica Sinica, 2023, 43(5): 242-250.(in Chinese). doi: 10.3788/AOS221551

    [19] A BEISENOVA, A ISSATAYEVA, Z ASHIKBAYEVA et al. Distributed sensing network enabled by high-scattering MgO-doped optical fibers for 3D temperature monitoring of thermal ablation in liver phantom. Sensors, 21, 828(2021).

    [20] J SIERRA-PÉREZ, M A TORRES-ARREDONDO, A GÜEMES. Damage and nonlinearities detection in wind turbine blades based on strain field pattern recognition. FBGs, OBR and strain gauges comparison. Composite Structures, 135, 156-166(2016).

    [21] 仇唐国, 孙阳阳, 卢天鸣, 等. 基于OFDR技术的深层土体水平位移场监测研究[J]. 压电与声光, 2020, 42(1): 108-112.QIUT G, SUNY Y, LUT M, et al. Research on monitoring of horizontal displacement field of deep soil based on OFDR technology[J]. Piezoelectrics & Acoustooptics, 2020, 42(1): 108-112.(in Chinese)

    [22] L CHENG, H R MAO, P S PAN et al. Experimental verification research of pipeline deflection deformation monitoring method based on distributed optical fiber measured strain. Measurement, 199, 111483(2022).

    [23] S ABEDIN, A M BIONDI, R WU et al. Structural health monitoring using a new type of distributed fiber optic smart textiles in combination with optical frequency domain reflectometry (OFDR): taking a pedestrian bridge as case study. Sensors, 23, 1591(2023).

    [24] Q L CAI, S Y ZHU. Optical frequency domain reflectometry sensing for damage detection in long-span bridges using influence surface. Structural Health Monitoring, 22, 3465-3480(2023).

    [25] 范钦珊, 殷雅俊. 材料力学[M]. 北京: 清华大学出版社, 2004.QINSH F, YINY J.. Mechanics of Materials[M]. Beijing: Tsinghua University Press, 2004. (in Chinese)

    Guolu YIN, Jingming MA, Shengxian JIANG, Xin WANG, Yuanyin ZHANG, Tao ZHU. Distributed stress measurement for water pressure test of diversion steel branch pipe[J]. Optics and Precision Engineering, 2024, 32(17): 2635
    Download Citation