[1] Kim H, Hwang S, Park J, et al. Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system[J]. Nanotechnology, 2017, 28(40): 405202.
[6] Von Neumann J. The principles of large-scale computing machines[J]. IEEE Ann. Hist. Comput., 1988, 10: 243-256.
[7] Waldrop M M. The semiconductor industry will soon abandon its pursuit of Moores law[J]. Nature, 2016, 530: 144-147.
[8] Indiveri G, Liu S C. Memory and information processing in neuromorphic systems[J]. Prc. IEEE, 2015, 103: 1379-1397.
[9] Kandel E, Schwartz J. Principles of Neural Science[M]. 5th ed. Beijing: China Machine Press, 2013.
[10] Ferrucci D, Brown E, Chu-Carroll J, et al. Building Watson: An overview of the deepQA project[J]. AI Magazine, 2010, 31(3): 59-79.
[11] Dan Y, Poo M-M. Spike timing-dependent plasticity: From synapse to perception[J]. Physiol. Rev., 2006, 86: 1033-1048.
[12] Esser S K, Merolla P A, Arthur J V, et al. Convolutional networks for fast energy-efficient neuromorphic computing[J]. Proc. of the National Academy of Sciences, 2016, 113(41): 11441-11446.
[13] Indiveri G, Chicca E, Douglas R J. Artificial cognitive systems: From VLSI networks of spiking neurons to neuromorphic cognition[J]. Cognitive Computation, 2009, 1(2): 119-127.
[14] Hoang B, Hawkins S-K. How will rebooting computing help IoT[C]// 2015 18th Inter. Conf. on Intelligence in Next Generation Networks, Paris, France, 2015: 121-127.
[15] Kuzum D, Yu S, Wong H-S P. Synaptic electronics: Materials, devices and applications[J]. Nanotechnology, 2013, 24: 382001.
[16] Indiveri G, Linares-Barranco B, Legenstein R, et al. Integration of nanoscale memristor synapses in neuromorphic computing architectures[J]. Nanotechnology, 2013, 24: 384010.
[17] Tuma T, Pantazi A, Le Gallo M A, et al. Stochastic phase-change neurons[J]. Nat. Nanotechnol., 2016, 11: 693-699.
[18] Jo S H, Chang T, Ebong I, et al. Nanoscale memristor device as synapse in neuromorphic systems[J]. Nano Lett., 2010, 10: 1297-1301.
[19] Chanthbouala A, Garcia V, Cherifi R O, et al. A ferroelectric memristor[J]. Nat. Mater., 2012, 11: 860-864.
[20] Alibart F, Pleutin S, Bichler O, et al. A memristive nanoparticle/organic hybrid synapstor for neuroinspired computing[J]. Advanced Functional Materials, 2012, 22(3): 609-616.
[21] Gholipour B, Bastock P, Craig C, et al. Amorphous metal-sulphide microfibers enable photonic synapses for brain-like computing[J]. Advanced Optical Materials, 2015, 3(5): 634-634.
[22] Agnus G, Zhao W, Derycke V, et al. Two-terminal carbon nanotube programmable devices for adaptive architectures[J]. Advanced Materials, 2010, 22(6): 702-706.
[23] Caulfield H J, Dolev S. Why future supercomputing requires optics[J]. Nat. Photon., 2010, 4: 261-263.
[24] Kuramochi E, Nozaki K, Shinya A K, et al. Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip[J]. Nat. Photon., 2014, 8: 474-481.
[25] Van de Burgt Y, Melianas A, Keene S T, et al. Organic electronics for neuromorphic computing[J]. Nat. Electron., 2018, 1: 386-397.
[26] Zucker R S, Regehr W G. Short-term synaptic plasticity[J]. Annual Review of Physiology, 2002, 64(1): 355-405.
[27] Abbott L F, Regehr W G. Synaptic computation[J]. Nature, 2004, 431: 796-803.
[28] He T, Xi C, Yujun X, et al. Emulating bilingual synaptic response using a junction-based artificial synaptic device[J]. ACS Nano, 2017, 11(7): 7156-7163.
[29] Chen Z, Wang G, Wang X. Physical mechanism and response characteristics of unsaturated optical stopping based amorphous arsenic sulfide thin-film waveguides[J]. IEEE Photonics J., 2019, 11(1): 6100910.
[30] Chen Z, Wang G, Wang X, et al. Moving toward optoelectronic logic circuits for visible light: A chalcogenide glass single-mode single-polarization optical waveguide switch[J]. Appl. Optics, 2017, 56(5): 1405-1412.