• Journal of Resources and Ecology
  • Vol. 11, Issue 4, 342 (2020)
Peili SHI1、1、*, Ning WU2、2, and S. RAWAT Gopal3、3
Author Affiliations
  • 1Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • 1中国科学院地理科学与资源研究所,北京 100101
  • 2Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
  • 2中国科学院成都生物研究所,成都 610041
  • 3Wildlife Institute of India, Dehradun 248 001, Uttaranchal, India
  • 3印度野生动物研究所,德拉敦 248 001,北阿坎德邦,印度
  • show less
    DOI: 10.5814/j.issn.1674-764x.2020.04.002 Cite this Article
    Peili SHI, Ning WU, S. RAWAT Gopal. The Distribution Patterns of Timberline and Its Response to Climate Change in the Himalayas[J]. Journal of Resources and Ecology, 2020, 11(4): 342 Copy Citation Text show less
    References

    [1] B Baker B, K Moseley R. Advancing treeline and retreating glaciers: Implications for conservation in Yunnan, P. R. China. Arctic, Antarctic, and Alpine Research, 39, 200-209(2007).

    [2] K Birmann, C Korner. Nitrogen status of conifer needles at the alpine treeline. Plant Ecology & Diversity, 2, 233-241(2009).

    [3] S Chang D H. The vegetation zonation of the Tibetan Plateau. Mountain Research and Development, 1, 29-48(1981).

    [4] G Hoch, C Körner. Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Functional Ecology, 19, 941-951(2005).

    [5] K Holtmeier F, G Broll. Treeline advance — Driving processes and adverse factors. Landscape Online, 1, 1-32(2007).

    [6] C Körner. A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445-459(1998).

    [7] C Körner. Worldwide positions of alpine treelines and their causes. In: Beniston M, Inne J L (eds.). The impacts of climate variability on forests, lecture notes in earth sciences(1998).

    [8] C Körner. Alpine plant life: Functional plant ecology of high mountain ecosystems (2nd edition). Berlin: Springer.(2003).

    [9] C Körner. Climatic treelines: Conventions, global patterns, causes. Erdkunde, 61, 316-324(2007).

    [10] C Körner. Alpine treelines — Functional ecology of the global high elevation tree limits. Basel: Springer.(2012).

    [11] C Körner. Treelines will be understood once the functional difference between a tree and a shrub is. AMBIO, 41, 197-206(2012).

    [12] C Körner. Water, nutrient and carbon relations. In: Körner C (ed.). Alpine Treelines. Basel: Springer, 151-168(2012).

    [13] C Körner. Alpine ecosystems and the high-elevation treeline. In: Sven Erik J, Brian D F (eds.). Encyclopedia of ecology, 407-413(2018).

    [14] C Körner, J Paulsen. A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31, 713-732(2004).

    [15] C Kuan. The geography of conifers in Sichuan(1982).

    [16] M Li, W Xiao, P Shi et al. Nitrogen and carbon source-sink relationships in trees at the Himalayan treelines compared with lower elevations. Plant, Cell & Environment, 31, 1377-1387(2008).

    [17] W Li, P Chou. The geographical distribution of the spruce-fir forest in China and its modelling. Mountain Research and Development, 4, 203-212(1984).

    [18] W Li, Y Han, M Shen. Tibetan forests.(1985).

    [19] E Liang, B Dawadi, N Pederson et al. Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature?. Ecology, 95, 2453-2465(2014).

    [20] E Liang, C Leuschner, C Dulamsuren et al. Global warming-related tree growth decline and mortality on the North-Eastern Tibetan Plateau. Climatic Change, 134, 163-176(2016).

    [21] E Liang, Y Wang, D Eckstein et al. Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming. New Phytologist, 190, 760-769(2011).

    [22] E Liang, Y Wang, S Piao et al. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the USA, 113, 4380-4385(2016).

    [23] B Liu, Y Li, D Eckstein et al. Has an extending growing season any effect on the radial growth of Smith fir at the timberline on the southeastern Tibetan Plateau?. Trees, 27, 441-446(2013).

    [24] Z Liu. The vegetation of Gongga Mountain.(1985).

    [25] G Liu Z, C Zhong Z. Sichuan vegetation(1980).

    [26] G Liu Z, C Zhong Z. Sichuan vegetation(1980).

    [27] G Miehe, S Miehe, J Vogel et al. Highest treeline in the northern hemisphere found in southern Tibet. Mountain Research and Development, 27, 169-173(2007).

    [28] P Millard, M Sommerkorn, A Grelet G. Environmental change and carbon limitation in trees: A biochemical, ecophysiological and ecosystem appraisal. New Phytologist, 175, 11-28(2007).

    [29] M Mou Y, O Fang, X Cheng et al. Recent tree growth decline unprecedented over the last four centuries in a Tibetan juniper forest. Journal of Forestry Research, 30, 1429-1436(2019).

    [30] S Negi P. Climate change, alpine treeline dynamics and associated terminology: Focus on northwestern Indian Himalaya. Tropical Ecology, 53, 371-374(2012).

    [31] S Panigrahy, D Anitha, M Kimothi M et al. Timberline change detection using topographic map and satellite imagery. Tropical Ecology, 51, 87-91(2010).

    [32] M Rahman, M Islam, A Bräuning. Tree radial growth is projected to decline in South Asian moist forest trees under climate change. Global and Planetary Change, 170, 106-119(2018).

    [33] S Rawal R, S Pangtey Y P. Distribution and structural-functional attributes of trees in the high altitude zone of Central Himalaya, India. Vegetatio, 112, 29-34(1994).

    [34] S Rawat D. Monitoring ecosystem boundaries in the Himalaya through an “eye in the sky”. Current Science, 102, 1352-1354(2012).

    [35] U Schickhoff. The upper timberline in the Himalayas, Hindu Kush and Karakorum. In: Broll G, Keplin B (eds.). A review of geographical and ecological aspects. mountain ecosystems. studies in treeline ecology, 275-354(2005).

    [36] U Schweinfurth. The horizontal and vertical spread of vegetation in Himalayas. Bonn Geographical Treatises, 20, 373-379(1957).

    [37] P Shi. A study on the vegetation ecology of subalpine timberline ecotone. PhD diss., Beijing: Chinese Academy of Sciences(1999).

    [38] P Shi, C Körne, G Hoch. End of season carbon supply status of woody species near the treeline in western China. Basic and Applied Ecology, 7, 370-377(2006).

    [39] P Shi, C Körner, G Hoch. A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas. Functional Ecology, 22, 213-220(2008).

    [40] B Shrestha U, S Gautam, S Bawa K. Widespread climate change in the Himalayas and associated changes in local ecosystems. Plos One, 7, e36741(2012). https://www.ncbi.nlm.nih.gov/pubmed/22615804

    [41] R Sigdel S, B Dawadi, J Camarero J et al. Moisture-limited tree growth for a subtropical Himalayan conifer forest in Western Nepal. Forests, 9(2018).

    [42] R Sigdel S, Y Wang, J Camarero J et al. Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Global Change Biology, 24, 5549-5559(2018).

    [43] P Singh C, S Panigrahy, A Thapliyal et al. Monitoring the alpine treeline shift in parts of the Indian Himalayas using remote sensing. Current Science, 102, 559-562(2012).

    [44] A Stainton J D. Forest of Nepal. London: John Murray.(1972).

    [45] C Stevens G, F Fox J. The causes of treeline. Annual Review of Ecosystem and Systematics, 22, 171-191(1991).

    [46] W Tranquillini. Physiology ecology of the alpine timberline — Tree existence at high altitudes with special reference to the European Alps. Berlin: Springer(1979).

    [47] W Tranquillini. Climate and physiology of trees in the alpine timberline regions. Palder Klimaforschung, 9, 127-136(1993).

    [48] X Wang, L Zhang, Y Fang J. Geographical differences in alpine timberline and its climate interpretation in China. Acta Geographica Sinica, 59, 871-879(2004).

    [49] Y Wang, J Julio Camarero, T Luo et al. Spatial patterns of Smith fir alpine treelines on the south-eastern Tibetan Plateau support that contingent local conditions drive recent treeline patterns. Plant Ecology & Diversity, 5, 311-321(2012).

    [50] P Wardle. Alpine timberline. In: Ives J D, Barry R G (eds.). Arctic and alpine environments, 371-402(1974).

    [51] E Wiley, B Helliker. A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytologist, 195, 285-289(2012).

    [52] E Wiley, S Huepenbecker, B Casper B et al. The effects of defoliation on carbon allocation: Can carbon limitation reduce growth in favour of storage?. Tree Physiology, 33, 1216-1228(2013).

    [53] Y Wu C. Vegetation of China.(1980).

    [54] Y Yao, B Zhang. The mass elevation effect of the Tibetan Plateau and its implications for alpine treelines. International Journal of Climatology, 35, 1833-1846(2015).

    [55] W Zhang J, T Wang J, L Chen W et al. Tibetan vegetation.(1988).

    [56] D Zheng, Q Yang. Some problems on the altitudinal belts in southeastern Qinghai-Xizang (Tibetan) Plateau. Acta Geographica Sinica, 40, 60-69(1985).

    [57] D Zheng, R Zhang, Q Yang. Physic-geographic differentiation of the Qinghai-Tibetan Plateau. In: Zheng D (ed.). Geological and ecological studies of Qinghai-Xizang Plateau, 1851-1860(1981).

    [58] D Zheng, R Zhang, Y Yang Q. On physical zones in the Qinghai-Tibetan Plateau. Acta Geographica Sinica, 34, 1-11(1979).

    [59] Y Zheng. A study on the correlation between montane forest vegetation and climate in the southeastern part of Qinghai-Tibetan Plateau. PhD diss., Beijing: Institute of Geography, Chinese Academy of Sciences(1995).

    Peili SHI, Ning WU, S. RAWAT Gopal. The Distribution Patterns of Timberline and Its Response to Climate Change in the Himalayas[J]. Journal of Resources and Ecology, 2020, 11(4): 342
    Download Citation