• Journal of Advanced Dielectrics
  • Vol. 14, Issue 6, 2450001 (2024)
Vitaly Yu. Topolov* and Sofya A. Kovrigina
Author Affiliations
  • Department of Physics,Southern Federal University,5 Zorge Street,Rostov-on-Don 344090,Russia
  • show less
    DOI: 10.1142/S2010135X24500012 Cite this Article
    Vitaly Yu. Topolov, Sofya A. Kovrigina. Novel high-performance 2–1–2 composites with two ferroelectric components causing a variable anisotropy of figures of merit[J]. Journal of Advanced Dielectrics, 2024, 14(6): 2450001 Copy Citation Text show less
    References

    [1] L. Li, S. Zhang, Z. Xu, X. Geng, F. Wen, J. Luo, T. R. Shrout. Hydrostatic piezoelectric properties of [011] poled Pb(Mg1∕3Nb2∕3)O3-PbTiO3 single crystals and 2–2 lamellar composites. Appl. Phys. Lett., 104, 032909(2014).

    [2] R. Zhang, P. Fan, H. Fan, B. Ye, G. Zhang, S. Jiang, H. Zhang. Tailoring the strain performance of lead-free relaxor/ferroelectric-layered composites. J. Electrocer., 44, 32(2020).

    [3] Y. Je, M. Sim, Y. Cho, S.-G. Lee, H.-S. Seo. Theoretical and experimental studies on sensitivity and bandwidth of thickness-mode driving hydrophone utilizing a 2–2 piezoelectric single crystal composite. Sensors, 23, 3445(2023).

    [4] Z. Ma, N. Jia, C. Li, L. Ning, Y. Dang, H. Du, F. Li, Z. Xu. Improved piezoelectric properties of 2–2 piezoelectric single crystal composites for acoustic transducer applications via alternating current polarization. Mater. Lett., 353, 135284(2023).

    [5] C. Shi, J. Lin, G. Ge, Y. Hao, J. Song, Y. Wei, W. Yao. Design and manufacture of lead-free eco-friendly cement-based piezoelectric composites achieving superior piezoelectric properties for concrete structure applications. Compos. B: Eng., 259, 110750(2023).

    [6] C. R. Bowen, V. Yu. Topolov, H. A. Kim. Modern Piezoelectric Energy-Harvesting Materials(2016).

    [7] Z. Zeng, L. Gai, X. Wang, D. Lin, S. Wang, H. Luo, D. Wang. A plastic-composite-plastic structure high performance flexible energy harvester based on PIN-PMN-PT single crystal/epoxy 2–2 composite. Appl. Phys. Lett., 110, 103501(2017).

    [8] J. I. Roscow, V. Yu. Topolov, C. R. Bowen, H. Khanbareh. Innovative Piezo-Active Composites and Their Structure — Property Relationships(2022).

    [9] V. Yu. Topolov, P. Bisegna, C. R. Bowen. Piezo-Active Composites. Orientation Effects and Anisotropy Factors(2014).

    [10] X. Dongyu, C. Xin, H. Shifeng. Investigation of inorganic fillers on properties of 2–2 connectivity cement/polymer based piezoelectric composites. Constr. Build. Mater., 94, 678(2015).

    [11] V. Yu. Topolov, A. N. Isaeva. Hydrostatic piezoelectric parameters of lead-free 2–0–2 composites with two single-crystal components: Waterfall-like orientation dependences. J. Adv. Dielect., 10, 2050015(2020).

    [12] A. N. Isaeva, V. Yu. Topolov, C. R. Bowen, J. I. Roscow. Twelve modified figures of merit of 2–2-type composites based on relaxor-ferroelectric single crystals. Mater. Chem. Phys., 279, 125691(2022).

    [13] V. Yu. Topolov, A. V. Krivoruchko, N. V. Prutsakova. Large piezoelectric anisotropy and high hydrostatic piezoelectric activity due to an appreciable orientation effect and porosity in novel 2–2–0 composites. J. Adv. Dielect., 13, 2350006(2023).

    [14] R. E. Newnham, D. P. Skinner, L. E. Cross. Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull., 13, 525(1978).

    [15] A. Safari, E. K. Akdogan. Rapid prototyping of novel piezoelectric composites. Ferroelectrics, 331, 153(2006).

    [16] V. Yu. Topolov. Novel lead-free 2–1–2 composite: Predicted high piezoelectric sensitivity and significant hydrostatic response. Smart Mater. Struct., 32, 085010(2023).

    [17] V. Yu. Topolov. Novel piezo-active 2–1–2 composites with sets of large hydrostatic parameters. Ferroelectrics Lett. Sec., 50, 102(2023).

    [18] J. H. Huang, W.-S. Kuo. The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions. J. Appl. Phys., 81, 1378(1997).

    [19] J. H. Huang, S. Yu. Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Compos. Eng., 4, 1169(1994).

    [20] T. Ikeda. Fundamentals of Piezoelectricity(1990).

    [21] F. Levassort, M. Lethiecq, D. Certon, F. Patat. A matrix method for modeling electroelastic moduli of 0–3 piezo-composites. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 44, 445(1997).

    [22] J. I. Roscow, H. Pearce, H. Khanbareh, S. Kar-Narayan, C. R. Bowen. Modified energy harvesting figures of merit for stress- and strain-driven piezoelectric systems. Eur. Phys. J. Spec. Top., 228, 1537(2019).

    [23] R. Zhang, B. Jiang, W. Cao, A. Amin. Complete set of material constants of 0.93Pb(Zn1∕3Nb2∕3)O3−0.07PbTiO3 domain engineered single crystal. J. Mater. Sci. Lett., 21, 1877(2002).

    [24] R. Zhang, B. Jiang, W. Jiang, W. Cao. Complete set of elastic,dielectric,and piezoelectric coefficents of 0.93Pb(Zn1∕3Nb2∕3)O3 −0.07PbTiO3 single crystal poled along [011]. Appl. Phys. Lett., 89, 242908(2006).

    [25] D. La-Orauttapong, B. Noheda, Z.-G. Ye, P. M. Gehring, J. Toulouse, D. E. Cox, G. Shirane. Phase diagram of the relaxor ferroelectric (1 – x)Pb(Zn1∕3Nb2∕3)O3 – xPbTiO3. Phys. Rev. B, 65, 144101(2002).

    [26] X. Huo, R. Zhang, L. Zheng, S. Zhang, R. Wang, J. Wang, S. Sang, B. Yang, W. Cao. (K,Na,Li)(Nb,Ta)O3:Mn lead-free single crystal with high piezoelectric properties. J. Am. Ceram. Soc., 98, 1829(2015).

    [27] F.-Z. Yao, K. Wang, J.-F. Li. Comprehensive investigation of elastic and electrical properties of Li/Ta-modified (K,Na)NbO3 lead-free piezoceramics. J. Appl. Phys., 113, 174105(2013).

    [28] K. E. Evans, K. L. Alderson. The static and dynamic moduli of auxetic microporous polyethylene. J. Mater. Sci. Lett., 11, 1721(1992).

    [29] F. Wang, C. He, Y. Tang, X. Zhao, H. Luo. Single-crystal 0.7Pb(Mg1∕3Nb2∕3)O3 — 0.3PbTiO3 / epoxy 1–3 piezoelectric composites prepared by the lamination technique. Mater. Chem. Phys,, 105, 273(2007).

    [30] V. Yu. Topolov, A. N. Isaeva. Modified reception parameters of 1–3 composites based on ferroelectric crystals. Tech. Phys., 66, 947(2021).

    [31] H. L. W. Chan, J. Unsworth. Simple model for piezoelectric ceramic/polymer 1–3 composites used in ultrasonic transducer applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 36, 434(1989).

    [32] V. L. Stuber, D. B. Deutz, J. Bennett, D. Cannel, D. M. de Leeuw, S. van der Zwaag, P. Groen. Flexible lead-free piezoelectric composite materials for energy harvesting applications. Energy Technol., 7, 177(2019).

    [33] V. Yu. Topolov, C. R. Bowen, A. V. Krivoruchko, A. N. Isaeva. Orientation effects and figures of merit in advanced 2–2-type composites based on [011]-poled domain-engineered single crystals. CrystEngComm, 24, 1177(2022).

    [34] E. K. Akdogan, M. Allahverdi, A. Safari. Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 52, 746(2005).

    Vitaly Yu. Topolov, Sofya A. Kovrigina. Novel high-performance 2–1–2 composites with two ferroelectric components causing a variable anisotropy of figures of merit[J]. Journal of Advanced Dielectrics, 2024, 14(6): 2450001
    Download Citation