• Photonics Insights
  • Vol. 3, Issue 3, R07 (2024)
Fei Ding†,*, Chao Meng*, and Sergey I. Bozhevolnyi*
Author Affiliations
  • Centre for Nano Optics, University of Southern Denmark, Odense, Denmark
  • show less
    DOI: 10.3788/PI.2024.R07 Cite this Article Set citation alerts
    Fei Ding, Chao Meng, Sergey I. Bozhevolnyi, "Electrically tunable optical metasurfaces," Photon. Insights 3, R07 (2024) Copy Citation Text show less
    References

    [1] N. Shitrit et al. Optical spin Hall effects in plasmonic chains. Nano Lett., 11, 2038(2011).

    [2] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333(2011).

    [3] L. Huang et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett., 12, 5750(2012).

    [4] S. Sun et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426(2012).

    [5] S. Sun et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett., 12, 6223(2012).

    [6] N. Yu et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett., 12, 6328(2012).

    [7] Y. Zhao, M. A. Belkin, A. Alù. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun., 3, 870(2012).

    [8] C. Pfeiffer, A. Grbic. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett., 110, 197401(2013).

    [9] X. Yin et al. Photonic spin Hall effect at metasurfaces. Science, 339, 1405(2013).

    [10] A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [11] N. Meinzer, W. L. Barnes, I. R. Hooper. Plasmonic meta-atoms and metasurfaces. Nat. Photonics, 8, 889(2014).

    [12] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139(2014).

    [13] H.-T. Chen, A. J. Taylor, N. Yu. A review of metasurfaces: physics and applications. Rep. Prog. Phys., 79, 076401(2016).

    [14] P. Genevet et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 4, 139(2017).

    [15] H. Hsiao, C. H. Chu, D. P. Tsai. Fundamentals and applications of metasurfaces. Small Methods, 1, 1600064(2017).

    [16] G. Li, S. Zhang, T. Zentgraf. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2, 17010(2017).

    [17] S. M. Choudhury et al. Material platforms for optical metasurfaces. Nanophotonics, 7, 959(2018).

    [18] F. Ding, A. Pors, S. I. Bozhevolnyi. Gradient metasurfaces: a review of fundamentals and applications. Rep. Prog. Phys., 81, 026401(2018).

    [19] F. Ding et al. A review of gap-surface plasmon metasurfaces: fundamentals and applications. Nanophotonics, 7, 1129(2018).

    [20] Q. He et al. High-efficiency metasurfaces: principles, realizations, and applications. Adv. Opt. Mater., 6, 1800415(2018).

    [21] S. M. Kamali et al. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 7, 1041(2018).

    [22] X. Luo. Subwavelength optical engineering with metasurface waves. Adv. Opt. Mater., 6, 1701201(2018).

    [23] S. Sun et al. Electromagnetic metasurfaces: physics and applications. Adv. Opt. Photonics, 11, 380(2019).

    [24] S. Chen et al. Metasurface-empowered optical multiplexing and multifunction. Adv. Mater., 32, 1805912(2020).

    [25] W. T. Chen, A. Y. Zhu, F. Capasso. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater., 5, 604(2020).

    [26] F. Ding. A review of multifunctional optical gap-surface plasmon metasurfaces. Prog. Electromagn. Res., 174, 55(2022).

    [27] J. Yao et al. Integrated-resonant metadevices: a review. Adv. Photonics, 5, 024001(2023).

    [28] A. I. Kuznetsov et al. Roadmap for optical metasurfaces. ACS Photonics, 11, 816(2024).

    [29] M. Khorasaninejad, F. Capasso. Metalenses: versatile multifunctional photonic components. Science, 358, eaam8100(2017).

    [30] P. Lalanne, P. Chavel. Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev., 11, 1600295(2017).

    [31] M. L. Tseng et al. Metalenses: advances and applications. Adv. Opt. Mater., 6, 1800554(2018).

    [32] X. Zou et al. Imaging based on metalenses. PhotoniX, 1, 2(2020).

    [33] M. Pan et al. Dielectric metalens for miniaturized imaging systems: progress and challenges. Light Sci. Appl., 11, 195(2022).

    [34] T. Li et al. Revolutionary meta-imaging: from superlens to metalens. Photonics Insights, 2, R01(2023).

    [35] P. Lalanne et al. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett., 23, 1081(1998).

    [36] F. Aieta et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett., 12, 4932(2012).

    [37] A. Pors et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett., 13, 829(2013).

    [38] A. Arbabi et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937(2015).

    [39] A. Arbabi et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun., 6, 7069(2015).

    [40] M. Khorasaninejad et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190(2016).

    [41] E. Arbabi et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica, 4, 625(2017).

    [42] S. Wang et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227(2018).

    [43] S. Shrestha et al. Broadband achromatic dielectric metalenses. Light Sci. Appl., 7, 85(2018).

    [44] W. T. Chen et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220(2018).

    [45] Z. Li et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv., 7, eabe4458(2021).

    [46] J. Engelberg, U. Levy. Achromatic flat lens performance limits. Optica, 8, 834(2021).

    [47] J. Chen et al. Planar wide-angle-imaging camera enabled by metalens array. Optica, 9, 431(2022).

    [48] C. Chen et al. Bifacial-metasurface-enabled pancake metalens with polarized space folding. Optica, 9, 1314(2022).

    [49] T. Ellenbogen, K. Seo, K. B. Crozier. Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett., 12, 1026(2012).

    [50] W. Li et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun., 6, 8379(2015).

    [51] A. Pors, M. G. Nielsen, S. I. Bozhevolnyi. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica, 2, 716(2015).

    [52] A. Shaltout et al. Photonic spin Hall effect in gap–plasmon metasurfaces for on-chip chiroptical spectroscopy. Optica, 2, 860(2015).

    [53] W. T. Chen et al. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology, 27, 224002(2016).

    [54] E. Maguid et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science, 352, 1202(2016).

    [55] F. Ding et al. Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces. ACS Photonics, 4, 943(2017).

    [56] E. Arbabi et al. Full-stokes imaging polarimetry using dielectric metasurfaces. ACS Photonics, 5, 3132(2018).

    [57] M. Jung et al. Polarimetry using graphene-integrated anisotropic metasurfaces. ACS Photonics, 5, 4283(2018).

    [58] A. Basiri et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light Sci. Appl., 8, 78(2019).

    [59] N. A. Rubin et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science, 365, eaax1839(2019).

    [60] L. Li et al. Monolithic full-Stokes near-infrared polarimetry with chiral plasmonic metasurface integrated graphene–silicon photodetector. ACS Nano, 14, 16634(2020).

    [61] J. Wei et al. Mid-infrared semimetal polarization detectors with configurable polarity transition. Nat. Photonics, 15, 614(2021).

    [62] Y. Ni et al. Computational spectropolarimetry with a tunable liquid crystal metasurface. eLight, 2, 23(2022).

    [63] C. Chen et al. Neural network assisted high-spatial-resolution polarimetry with non-interleaved chiral metasurfaces. Light Sci. Appl., 12, 288(2023).

    [64] A. Zaidi et al. Metasurface-enabled single-shot and complete Mueller matrix imaging. Nat. Photonics, 18, 704(2024).

    [65] A. Kristensen et al. Plasmonic colour generation. Nat. Rev. Mater., 2, 16088(2016).

    [66] M. Song et al. Colors with plasmonic nanostructures: A full-spectrum review. Appl. Phys. Rev., 6, 041308(2019).

    [67] S. Daqiqeh Rezaei et al. Nanophotonic structural colors. ACS Photonics, 8, 18(2021).

    [68] R. Fu et al. Metasurface-based nanoprinting: principle, design and advances. Opto-Electron. Sci., 1, 220011(2022).

    [69] K. Kumar et al. Printing colour at the optical diffraction limit. Nat. Nanotechnol., 7, 557(2012).

    [70] S. J. Tan et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett., 14, 4023(2014).

    [71] A. S. Roberts et al. Subwavelength plasmonic color printing protected for ambient use. Nano Lett., 14, 783(2014).

    [72] J. S. Clausen et al. Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett., 14, 4499(2014).

    [73] X. Zhu et al. Plasmonic colour laser printing. Nat. Nanotechnol., 11, 325(2016).

    [74] S. Sun et al. All-dielectric full-color printing with TiO2 metasurfaces. ACS Nano, 11, 4445(2017).

    [75] W. Yang et al. All-dielectric metasurface for high-performance structural color. Nat. Commun., 11, 1864(2020).

    [76] W.-J. Joo et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science, 370, 459(2020).

    [77] M. Song et al. Enabling optical steganography, data storage, and encryption with plasmonic colors. Laser Photonics Rev., 15, 2000343(2021).

    [78] M. Song et al. Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface. Nat. Nanotechnol., 18, 71(2023).

    [79] H. Wang et al. Coloured vortex beams with incoherent white light illumination. Nat. Nanotechnol., 18, 264(2023).

    [80] W. Wan, J. Gao, X. Yang. Metasurface holograms for holographic imaging. Adv. Opt. Mater., 5, 1700541(2017).

    [81] L. Huang, S. Zhang, T. Zentgraf. Metasurface holography: from fundamentals to applications. Nanophotonics, 7, 1169(2018).

    [82] Q. Jiang, G. Jin, L. Cao. When metasurface meets hologram: principle and advances. Adv. Opt. Photonics, 11, 518(2019).

    [83] R. Zhao, L. Huang, Y. Wang. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX, 1, 20(2020).

    [84] Z. Liu et al. Metasurface-enabled augmented reality display: a review. Adv. Photonics, 5, 034001(2023).

    [85] J. C. Zhang et al. Programmable optical meta-holograms. Nanophotonics, 13, 1201(2024).

    [86] X. Ni, A. V. Kildishev, V. M. Shalaev. Metasurface holograms for visible light. Nat. Commun., 4, 2807(2013).

    [87] L. Huang et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun., 4, 2808(2013).

    [88] W. T. Chen et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett., 14, 225(2014).

    [89] G. Zheng et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308(2015).

    [90] D. Wen et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun., 6, 8241(2015).

    [91] K. Huang et al. Silicon multi-meta-holograms for the broadband visible light. Laser Photonics Rev., 10, 500(2016).

    [92] X. Li et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv., 2, e1601102(2016).

    [93] R. Zhao et al. Multichannel vectorial holographic display and encryption. Light Sci. Appl., 7, 95(2018).

    [94] H. Ren et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol., 15, 948(2020).

    [95] F. Ding et al. Versatile polarization generation and manipulation using dielectric metasurfaces. Laser Photonics Rev., 14, 2000116(2020).

    [96] G. Qu et al. Reprogrammable meta-hologram for optical encryption. Nat. Commun., 11, 5484(2020).

    [97] Z. Li et al. Three-channel metasurfaces for simultaneous meta-holography and meta-nanoprinting: a single-cell design approach. Laser Photonics Rev., 14, 2000032(2020).

    [98] W. Yang et al. Dynamic bifunctional metasurfaces for holography and color display. Adv. Mater., 33, 2101258(2021).

    [99] Y. Eliezer et al. Suppressing meta-holographic artifacts by laser coherence tuning. Light Sci. Appl., 10, 104(2021).

    [100] P. Georgi et al. Optical secret sharing with cascaded metasurface holography. Sci. Adv., 7, eabf9718(2021).

    [101] M. Liu et al. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light Sci. Appl., 10, 107(2021).

    [102] X. Li et al. Time-sequential color code division multiplexing holographic display with metasurface. Opto-Electron. Adv., 6, 220060(2023).

    [103] Z. Liu et al. Broadband spin and angle co-multiplexed waveguide-based metasurface for six-channel crosstalk-free holographic projection. eLight, 4, 7(2024).

    [104] C. Zhang et al. Tantalum pentoxide: a new material platform for high-performance dielectric metasurface optics in the ultraviolet and visible region. Light Sci. Appl., 13, 23(2024).

    [105] X. Hu et al. Metasurface-based computational imaging: a review. Adv. Photonics, 6, 014002(2024).

    [106] A. Silva et al. Performing mathematical operations with metamaterials. Science, 343, 160(2014).

    [107] A. Pors, M. G. Nielsen, S. I. Bozhevolnyi. Analog computing using reflective plasmonic metasurfaces. Nano Lett., 15, 791(2015).

    [108] Z. Wang et al. On-chip wavefront shaping with dielectric metasurface. Nat. Commun., 10, 3547(2019).

    [109] J. Zhou et al. Optical edge detection based on high-efficiency dielectric metasurface. Proc. Natl. Acad. Sci., 116, 11137(2019).

    [110] Y. Zhou et al. Flat optics for image differentiation. Nat. Photonics, 14, 316(2020).

    [111] P. Zheng et al. Metasurface-based key for computational imaging encryption. Sci. Adv., 7, eabg0363(2021).

    [112] J. Zhou et al. Two-dimensional optical spatial differentiation and high-contrast imaging. Natl. Sci. Rev., 8, nwaa176(2021).

    [113] R. Wang et al. Computing metasurfaces enabled chiral edge image sensing. iScience, 25, 104532(2022).

    [114] Z. Wang et al. Integrated photonic metasystem for image classifications at telecommunication wavelength. Nat. Commun., 13, 2131(2022).

    [115] A. Cordaro et al. Solving integral equations in free space with inverse-designed ultrathin optical metagratings. Nat. Nanotechnol., 18, 365(2023).

    [116] I. Tanriover, S. A. Dereshgi, K. Aydin. Metasurface enabled broadband all optical edge detection in visible frequencies. Nat. Commun., 14, 6484(2023).

    [117] M. Deng et al. Broadband angular spectrum differentiation using dielectric metasurfaces. Nat. Commun., 15, 2237(2024).

    [118] B. T. Swartz et al. Broadband and large-aperture metasurface edge encoders for incoherent infrared radiation. Sci. Adv., 10, eadk0024(2024).

    [119] S. Wang et al. Metalens for accelerated optoelectronic edge detection under ambient illumination. Nano Lett., 24, 356(2024).

    [120] H. Zheng et al. Multichannel meta-imagers for accelerating machine vision. Nat. Nanotechnol., 19, 471(2024).

    [121] Q. He, S. Sun, L. Zhou. Tunable/reconfigurable metasurfaces: physics and applications. Research, 2019, 1849272(2019).

    [122] A. M. Shaltout, V. M. Shalaev, M. L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).

    [123] F. Neubrech, X. Duan, N. Liu. Dynamic plasmonic color generation enabled by functional materials. Sci. Adv., 6, eabc2709(2020).

    [124] O. A. M. Abdelraouf et al. Recent advances in tunable metasurfaces: materials, design, and applications. ACS Nano, 16, 13339(2022).

    [125] P. Berini. Optical beam steering using tunable metasurfaces. ACS Photonics, 9, 2204(2022).

    [126] E. Mikheeva et al. Space and time modulations of light with metasurfaces: recent progress and future prospects. ACS Photonics, 9, 1458(2022).

    [127] J. Yang et al. Active optical metasurfaces: comprehensive review on physics, mechanisms, and prospective applications. Rep. Prog. Phys., 85, 036101(2022).

    [128] T. Gu et al. Reconfigurable metasurfaces towards commercial success. Nat. Photonics, 17, 48(2023).

    [129] P.-G. de Gennes, J. Prost. The Physics of Liquid Crystals(2013).

    [130] M. J. Stephen, J. P. Straley. Physics of liquid crystals. Rev. Mod. Phys., 46, 617(1974).

    [131] D. A. Coleman et al. Polarization-modulated smectic liquid crystal phases. Science, 301, 1204(2003).

    [132] D. Kang et al. Liquid crystal-integrated metasurfaces for an active photonic platform. Opto-Electron. Adv., 7, 230216(2024).

    [133] M. Wuttig, H. Bhaskaran, T. Taubner. Phase-change materials for non-volatile photonic applications. Nat. Photonics, 11, 465(2017).

    [134] F. Ding, Y. Yang, S. I. Bozhevolnyi. Dynamic metasurfaces using phase-change chalcogenides. Adv. Opt. Mater., 7, 1801709(2019).

    [135] C. Zheng et al. Enabling active nanotechnologies by phase transition: from electronics, photonics to thermotics. Chem. Rev., 122, 15450(2022).

    [136] B. Gholipour et al. Roadmap on chalcogenide photonics. J. Phys. Photonics, 5, 012501(2023).

    [137] P. Prabhathan et al. Roadmap for phase change materials in photonics and beyond. iScience, 26, 107946(2023).

    [138] Z. Fang et al. Non-volatile materials for programmable photonics. APL Mater., 11, 100603(2023).

    [139] M. Imada, A. Fujimori, Y. Tokura. Metal-insulator transitions. Rev. Mod. Phys., 70, 1039(1998).

    [140] K. Kalyanasundaram. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord. Chem. Rev., 177, 347(1998).

    [141] H. Liu, J. Lu, X. R. Wang. Metamaterials based on the phase transition of VO2. Nanotechnology, 29, 024002(2018).

    [142] D. Mantione et al. Poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives: innovative conductive polymers for bioelectronics. Polymers, 9, 354(2017).

    [143] J. R. Reynolds, B. C. Thompson, T. A. Skotheim. Conjugated Polymers: Perspective, Theory, and New Materials(2019).

    [144] S. Chen, M. P. Jonsson. Dynamic conducting polymer plasmonics and metasurfaces. ACS Photonics, 10, 571(2023).

    [145] K. S. Novoselov et al. 2D materials and van der Waals heterostructures. Science, 353, aac9439(2016).

    [146] J. Shim et al. Electronic and optoelectronic devices based on two-dimensional materials: from fabrication to application. Adv. Electron. Mater., 3, 1600364(2017).

    [147] M. L. Brongersma. The road to atomically thin metasurface optics. Nanophotonics, 10, 643(2020).

    [148] Z. Dai et al. Artificial metaphotonics born naturally in two dimensions. Chem. Rev., 120, 6197(2020).

    [149] Q. Ma et al. Tunable optical properties of 2D materials and their applications. Adv. Opt. Mater., 9, 2001313(2021).

    [150] J. Lynch et al. Exciton resonances for atomically-thin optics. J. Appl. Phys., 132, 091102(2022).

    [151] C. Zeng et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electron. Adv., 5, 200098(2022).

    [152] G. V. Naik, V. M. Shalaev, A. Boltasseva. Alternative plasmonic materials: beyond gold and silver. Adv. Mater., 25, 3264(2013).

    [153] S. C. Dixon et al. n-Type doped transparent conducting binary oxides: an overview. J. Mater. Chem. C, 4, 6946(2016).

    [154] W. Jaffray et al. Transparent conducting oxides: from all-dielectric plasmonics to a new paradigm in integrated photonics. Adv. Opt. Photonics, 14, 148(2022).

    [155] A. X. Wang, W.-C. Hsu. Perspective on integrated photonic devices using transparent conductive oxides: challenges and opportunities. Appl. Phys. Lett., 124, 060503(2024).

    [156] F. Ullah, N. Deng, F. Qiu. Recent progress in electro-optic polymer for ultra-fast communication. PhotoniX, 2, 13(2021).

    [157] G. Chen et al. Advances in lithium niobate photonics: development status and perspectives. Adv. Photonics, 4, 034003(2022).

    [158] A. Fedotova et al. Lithium niobate meta-optics. ACS Photonics, 9, 3745(2022).

    [159] B. You et al. Lithium niobate on insulator–fundamental opto-electronic properties and photonic device prospects. Nanophotonics, 13, 3037(2024).

    [160] S. Chen et al. Kirigami/origami: unfolding the new regime of advanced 3D microfabrication/nanofabrication with ‘folding’. Light Sci. Appl., 9, 75(2020).

    [161] S. Chen et al. Technologies and applications of silicon-based micro-optical electromechanical systems: a brief review. J. Semicond., 43, 081301(2022).

    [162] Y. Zhao et al. Mechanically reconfigurable metasurfaces: fabrications and applications. Npj Nanophotonics, 1, 16(2024).

    [163] Y. Li et al. Recent progress on structural coloration. Photonics Insights, 3, R03(2024).

    [164] D. Franklin et al. Actively addressed single pixel full-colour plasmonic display. Nat. Commun., 8, 15209(2017).

    [165] Z.-W. Xie et al. Liquid-crystal tunable color filters based on aluminum metasurfaces. Opt. Express, 25, 30764(2017).

    [166] Y. Lee et al. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator. ACS Photonics, 4, 1954(2017).

    [167] K. Li et al. Electrically switchable structural colors based on liquid-crystal-overlaid aluminum anisotropic nanoaperture arrays. Opt. Express, 30, 31913(2022).

    [168] A. Komar et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals. Appl. Phys. Lett., 110, 071109(2017).

    [169] C. Zou et al. Electrically tunable transparent displays for visible light based on dielectric metasurfaces. ACS Photonics, 6, 1533(2019).

    [170] C. Zou et al. Multiresponsive dielectric metasurfaces. ACS Photonics, 8, 1775(2021).

    [171] X. Chang et al. Electrically tuned active metasurface towards metasurface-integrated liquid crystal on silicon (meta-LCoS) devices. Opt. Express, 31, 5378(2023).

    [172] X. Chang et al. Fast-switching reconfigurable metadevice with metasurface-induced liquid crystal alignment for light modulator applications. Opt. Mater. Express, 14, 1094(2024).

    [173] A. I. Kuznetsov et al. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).

    [174] S.-Q. Li et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 364, 1087(2019).

    [175] P. Moitra et al. Electrically tunable reflective metasurfaces with continuous and full-phase modulation for high-efficiency wavefront control at visible frequencies. ACS Nano, 17, 16952(2023).

    [176] R. C. Devlin et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl. Acad. Sci., 113, 10473(2016).

    [177] R. C. Devlin et al. Arbitrary spin-to–orbital angular momentum conversion of light. Science, 358, 896(2017).

    [178] Z. Shi et al. Single-layer metasurface with controllable multiwavelength functions. Nano Lett., 18, 2420(2018).

    [179] Y. Wu et al. TiO2 metasurfaces: from visible planar photonics to photochemistry. Sci. Adv., 5, eaax0939(2019).

    [180] D. H. Goldstein. Polarized Light(2017).

    [181] M. Sharma et al. Electrically and all-optically switchable nonlocal nonlinear metasurfaces. Sci. Adv., 9, eadh2353(2023).

    [182] M. V. Gorkunov et al. Superperiodic liquid-crystal metasurfaces for electrically controlled anomalous refraction. ACS Photonics, 7, 3096(2020).

    [183] H. Chung, O. D. Miller. Tunable metasurface inverse design for 80% switching efficiencies and 144° angular deflection. ACS Photonics, 7, 2236(2020).

    [184] M. Bosch et al. Electrically actuated varifocal lens based on liquid-crystal-embedded dielectric metasurfaces. Nano Lett., 21, 3849(2021).

    [185] S. Pancharatnam. Generalized theory of interference, and its applications: Part I. Coherent pencils. Proc. Indian Acad. Sci., 44, 247(1956).

    [186] M. V. Berry. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Math. Phys. Sci., 392, 45(1984).

    [187] Z. Bomzon et al. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett., 27, 1141(2002).

    [188] L. Huang et al. Broadband hybrid holographic multiplexing with geometric metasurfaces. Adv. Mater., 27, 6444(2015).

    [189] J. P. Balthasar Mueller et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).

    [190] X. Xie et al. Generalized Pancharatnam-Berry phase in rotationally symmetric meta-atoms. Phys. Rev. Lett., 126, 183902(2021).

    [191] J. Li et al. Electrically-controlled digital metasurface device for light projection displays. Nat. Commun., 11, 3574(2020).

    [192] P. Yu, J. Li, N. Liu. Electrically tunable optical metasurfaces for dynamic polarization conversion. Nano Lett., 21, 6690(2021).

    [193] T. Badloe et al. Liquid crystal-powered Mie resonators for electrically tunable photorealistic color gradients and dark blacks. Light Sci. Appl., 11, 118(2022).

    [194] T. Guo et al. Broad-tuning, dichroic metagrating Fabry-Perot filter based on liquid crystal for spectral imaging. Prog. Electromagn. Res., 177, 43(2023).

    [195] C.-Y. Fan et al. Electrically modulated varifocal metalens combined with twisted nematic liquid crystals. Opt. Express, 28, 10609(2020).

    [196] T. Badloe et al. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths. Adv. Sci., 8, 2102646(2021).

    [197] X. Ou et al. Tunable polarization-multiplexed achromatic dielectric metalens. Nano Lett., 22, 10049(2022).

    [198] T. Badloe et al. Bright-field and edge-enhanced imaging using an electrically tunable dual-mode metalens. ACS Nano, 17, 14678(2023).

    [199] I. Kim et al. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators. Adv. Mater., 32, 2004664(2020).

    [200] A. Asad et al. Spin-isolated ultraviolet-visible dynamic meta-holographic displays with liquid crystal modulators. Nanoscale Horiz., 8, 759(2023).

    [201] Y. Yang et al. Gap-plasmon-driven spin angular momentum selection of chiral metasurfaces for intensity-tunable metaholography working at visible frequencies. Nanophotonics, 11, 4123(2022).

    [202] C. Wan et al. Electric-driven meta-optic dynamics for simultaneous near-/far-field multiplexing display. Adv. Funct. Mater., 32, 2110592(2022).

    [203] J. Wang et al. Cholesteric liquid crystal-enabled electrically programmable metasurfaces for simultaneous near- and far-field displays. Nanoscale, 14, 17921(2022).

    [204] J. Kim et al. Dynamic hyperspectral holography enabled by inverse-designed metasurfaces with oblique helicoidal cholesterics. Adv. Mater., 36, 2311785(2024).

    [205] Y. Hu et al. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region. Nano Lett., 21, 4554(2021).

    [206] I. Kim et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat. Commun., 12, 3614(2021).

    [207] K. Li et al. Electrically switchable, polarization-sensitive encryption based on aluminum nanoaperture arrays integrated with polymer-dispersed liquid crystals. Nano Lett., 21, 7183(2021).

    [208] J. Tang et al. Dynamic augmented reality display by layer-folded metasurface via electrical-driven liquid crystal. Adv. Opt. Mater., 10, 2200418(2022).

    [209] Y. Shi et al. Electrical-driven dynamic augmented reality by on-chip vectorial meta-display. ACS Photonics, 11, 2123(2024).

    [210] P. Chen et al. Digitalizing self-assembled chiral superstructures for optical vortex processing. Adv. Mater., 30, 1705865(2018).

    [211] P. Chen et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics. Adv. Mater., 32, 1903665(2020).

    [212] S. Mansha et al. High resolution multispectral spatial light modulators based on tunable Fabry-Perot nanocavities. Light Sci. Appl., 11, 141(2022).

    [213] Z.-Y. Wang et al. Vectorial liquid-crystal holography. eLight, 4, 5(2024).

    [214] X. Yin et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light Sci. Appl., 6, e17016(2017).

    [215] M. Zhang et al. Plasmonic metasurfaces for switchable photonic spin–orbit interactions based on phase change materials. Adv. Sci., 5, 1800835(2018).

    [216] J. Tian et al. Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5. Nat. Commun., 10, 396(2019).

    [217] M. Y. Shalaginov et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat. Commun., 12, 1225(2021).

    [218] Q. Wang et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics, 10, 60(2016).

    [219] C. R. De Galarreta et al. Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared. Adv. Funct. Mater., 28, 1704993(2018).

    [220] A. Leitis et al. All-dielectric programmable Huygens’ metasurfaces. Adv. Funct. Mater., 30, 1910259(2020).

    [221] C. Ruiz De Galarreta et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica, 7, 476(2020).

    [222] M. N. Julian et al. Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging. Optica, 7, 746(2020).

    [223] H. Liu et al. Rewritable color nanoprints in antimony trisulfide films. Sci. Adv., 6, eabb7171(2020).

    [224] L. Lu et al. Reversible tuning of Mie resonances in the visible spectrum. ACS Nano, 15, 19722(2021).

    [225] K. Gao et al. Intermediate phase-change states with improved cycling durability of Sb2S3 by femtosecond multi-pulse laser irradiation. Adv. Funct. Mater., 31, 2103327(2021).

    [226] F. J. Morin. Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett., 3, 34(1959).

    [227] Y. Cui et al. Thermochromic VO2 for energy-efficient smart windows. Joule, 2, 1707(2018).

    [228] S. Chen et al. Gate-controlled VO2 phase transition for high-performance smart windows. Sci. Adv., 5, eaav6815(2019).

    [229] I. Olivares et al. Optical switching in hybrid VO2/Si waveguides thermally triggered by lateral microheaters. Opt. Express, 26, 12387(2018).

    [230] S. Cueff et al. VO2 nanophotonics. APL Photonics, 5, 110901(2020).

    [231] Y. Jung et al. Integrated hybrid VO2–silicon optical memory. ACS Photonics, 9, 217(2022).

    [232] T. Driscoll et al. Memory metamaterials. Science, 325, 1518(2009).

    [233] N. A. Butakov et al. Broadband electrically tunable dielectric resonators using metal–insulator transitions. ACS Photonics, 5, 4056(2018).

    [234] B. Chen et al. Electrically addressable integrated intelligent terahertz metasurface. Sci. Adv., 8, eadd1296(2022).

    [235] L. Liu et al. Hybrid metamaterials for electrically triggered multifunctional control. Nat. Commun., 7, 13236(2016).

    [236] Z. Zhu et al. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett., 17, 4881(2017).

    [237] X. Wang et al. Multifunctional microelectro-opto-mechanical platform based on phase-transition materials. Nano Lett., 18, 1637(2018).

    [238] J. Wang et al. Flexible phase change materials for electrically-tuned active absorbers. Small, 17, 2101282(2021).

    [239] R. Cabrera, E. Merced, N. Sepulveda. Performance of electro-thermally driven VO2-based MEMS actuators. J. Microelectromechanical Syst., 23, 243(2014).

    [240] D. Torres et al. VO2-based MEMS mirrors. J. Microelectromechanical Syst., 25, 780(2016).

    [241] Y. Kim et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces. Nano Lett., 19, 3961(2019).

    [242] M. Proffit et al. Electrically driven reprogrammable vanadium dioxide metasurface using binary control for broadband beam steering. ACS Appl. Mater. Interfaces, 14, 41186(2022).

    [243] S.-C. Jiang et al. Controlling the polarization state of light with a dispersion-free metastructure. Phys. Rev. X, 4, 021026(2014).

    [244] F. Shu et al. Electrically driven tunable broadband polarization states via active metasurfaces based on joule-heat-induced phase transition of vanadium dioxide. Laser Photonics Rev., 15, 2100155(2021).

    [245] J. King et al. Electrically tunable VO2–metal metasurface for mid-infrared switching, limiting and nonlinear isolation. Nat. Photonics, 18, 74(2024).

    [246] C. Wan et al. Limiting optical diodes enabled by the phase transition of vanadium dioxide. ACS Photonics, 5, 2688(2018).

    [247] A. Tripathi et al. Nanoscale optical nonreciprocity with nonlinear metasurfaces. Nat. Commun., 15, 5077(2024).

    [248] M. Cotrufo et al. Passive bias-free non-reciprocal metasurfaces based on thermally nonlinear quasi-bound states in the continuum. Nat. Photonics, 18, 81(2024).

    [249] T. Guo et al. Durable and programmable ultrafast nanophotonic matrix of spectral pixels. Nat. Nanotechnol.(2024).

    [250] S. Abdollahramezani et al. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics, 9, 1189(2020).

    [251] S. R. Ovshinsky. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett., 21, 1450(1968).

    [252] K. Shportko et al. Resonant bonding in crystalline phase-change materials. Nat. Mater., 7, 653(2008).

    [253] B. J. Eggleton, B. Luther-Davies, K. Richardson. Chalcogenide photonics. Nat. Photonics, 5, 141(2011).

    [254] M. Wuttig, N. Yamada. Phase-change materials for rewriteable data storage. Nat. Mater., 6, 824(2007).

    [255] D. Lencer et al. A map for phase-change materials. Nat. Mater., 7, 972(2008).

    [256] Y. Zhang et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun., 10, 4279(2019).

    [257] P. Hosseini, C. D. Wright, H. Bhaskaran. An optoelectronic framework enabled by low-dimensional phase-change films. Nature, 511, 206(2014).

    [258] M. A. Kats et al. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater., 12, 20(2013).

    [259] C. Ríos et al. Color depth modulation and resolution in phase-change material nanodisplays. Adv. Mater., 28, 4720(2016).

    [260] Y. Wang et al. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol., 16, 667(2021).

    [261] Y. Zhang et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol., 16, 661(2021).

    [262] S. Abdollahramezani et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nat. Commun., 13, 1696(2022).

    [263] S. Abdollahramezani et al. Reconfigurable multifunctional metasurfaces employing hybrid phase-change plasmonic architecture. Nanophotonics, 11, 3883(2022).

    [264] C. C. Popescu et al. Electrically reconfigurable phase-change transmissive metasurface. Adv. Mater., 36, 2400627(2024).

    [265] P. R. Subramanian, L. Kacprzak. Binary Alloy Phase Diagrams(1990).

    [266] W. Dong et al. Wide bandgap phase change material tuned visible photonics. Adv. Funct. Mater., 29, 1806181(2019).

    [267] M. Delaney et al. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater., 30, 2002447(2020).

    [268] Z. Fang et al. Non-volatile phase-change materials for programmable photonics. Sci. Bull., 68, 783(2023).

    [269] K. V. Sreekanth et al. Dynamic color generation with electrically tunable thin film optical coatings. Nano Lett., 21, 10070(2021).

    [270] P. Prabhathan et al. Electrically tunable steganographic nano-optical coatings. Nano Lett., 23, 5236(2023).

    [271] Z. Fang et al. Nonvolatile phase-only transmissive spatial light modulator with electrical addressability of individual pixels. ACS Nano, 18, 11245(2024).

    [272] C. G. Granqvist. Electrochromics for smart windows: oxide-based thin films and devices. Thin Solid Films, 564, 1(2014).

    [273] Y. Wang, E. L. Runnerstrom, D. J. Milliron. Switchable materials for smart windows. Annu. Rev. Chem. Biomol. Eng., 7, 283(2016).

    [274] Y. Ke et al. Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Adv. Energy Mater., 9, 1902066(2019).

    [275] C. Gu et al. Emerging electrochromic materials and devices for future displays. Chem. Rev., 122, 14679(2022).

    [276] Y. Li et al. Dynamic tuning of gap plasmon resonances using a solid-state electrochromic device. Nano Lett., 19, 7988(2019).

    [277] E. Hopmann, A. Y. Elezzabi. Plasmochromic nanocavity dynamic light color switching. Nano Lett., 20, 1876(2020).

    [278] Z. Wang et al. Towards full-colour tunability of inorganic electrochromic devices using ultracompact Fabry–Perot nanocavities. Nat. Commun., 11, 302(2020).

    [279] J. Eaves-Rathert et al. Dynamic color tuning with electrochemically actuated TiO2 metasurfaces. Nano Lett., 22, 1626(2022).

    [280] L. Yang et al. Rechargeable metasurfaces for dynamic color display based on a compositional and mechanical dual-altered mechanism. Research, 2022, 9828757(2022).

    [281] E. Kovalik et al. Low-power electrochemical modulation of silicon-based metasurfaces. ACS Photonics, 11, 445(2024).

    [282] X. Duan, S. Kamin, N. Liu. Dynamic plasmonic colour display. Nat. Commun., 8, 14606(2017).

    [283] X. Duan, N. Liu. Scanning plasmonic color display. ACS Nano, 12, 8817(2018).

    [284] X. Duan, N. Liu. Magnesium for dynamic nanoplasmonics. Acc. Chem. Res., 52, 1979(2019).

    [285] J. Li et al. Addressable metasurfaces for dynamic holography and optical information encryption. Sci. Adv., 4, eaar6768(2018).

    [286] P. Yu et al. Generation of switchable singular beams with dynamic metasurfaces. ACS Nano, 13, 7100(2019).

    [287] J. Li et al. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display. ACS Nano, 14, 7892(2020).

    [288] M. Huang et al. Voltage-gated optics and plasmonics enabled by solid-state proton pumping. Nat. Commun., 10, 5030(2019).

    [289] K. Xiong et al. Switchable plasmonic metasurfaces with high chromaticity containing only abundant metals. Nano Lett., 17, 7033(2017).

    [290] S. Chen et al. Tunable structural color images by UV-patterned conducting polymer nanofilms on metal surfaces. Adv. Mater., 33, 2102451(2021).

    [291] S. Chen et al. Conductive polymer nanoantennas for dynamic organic plasmonics. Nat. Nanotechnol., 15, 35(2020).

    [292] A. Karki et al. Electrical tuning of plasmonic conducting polymer nanoantennas. Adv. Mater., 34, 2107172(2022).

    [293] S. Lee et al. Plasmonic polymer nanoantenna arrays for electrically tunable and electrode-free metasurfaces. J. Mater. Chem. A, 11, 21569(2023).

    [294] J. Karst et al. Electrically switchable metallic polymer nanoantennas. Science, 374, 612(2021).

    [295] J. Ratzsch et al. Electrically switchable metasurface for beam steering using PEDOT polymers. J. Opt., 22, 124001(2020).

    [296] Y. Lee et al. Dynamic beam control based on electrically switchable nanogratings from conducting polymers. Nanophotonics, 12, 2865(2023).

    [297] J. Karst et al. Electro-active metaobjective from metalenses-on-demand. Nat. Commun., 13, 7183(2022).

    [298] J. H. Ko et al. Sub-1-volt electrically programmable optical modulator based on active Tamm plasmon. Adv. Mater., 36, 2310556(2024).

    [299] Z. A. Boeva, V. G. Sergeyev. Polyaniline: synthesis, properties, and application. Polym. Sci. Ser. C, 56, 144(2014).

    [300] C. Barbero, R. Kötz. Nanoscale dimensional changes and optical properties of polyaniline measured by in situ spectroscopic ellipsometry. J. Electrochem. Soc., 141, 859(1994).

    [301] R. Kaissner et al. Electrochemically controlled metasurfaces with high-contrast switching at visible frequencies. Sci. Adv., 7, eabd9450(2021).

    [302] Y. R. Leroux et al. Conducting polymer electrochemical switching as an easy means for designing active plasmonic devices. J. Am. Chem. Soc., 127, 16022(2005).

    [303] N. Jiang, L. Shao, J. Wang. (Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths. Adv. Mater., 26, 3282(2014).

    [304] J.-W. Jeon et al. Electrically controlled plasmonic behavior of gold nanocube@polyaniline nanostructures: transparent plasmonic aggregates. Chem. Mater., 28, 2868(2016).

    [305] W. Lu, N. Jiang, J. Wang. Active electrochemical plasmonic switching on polyaniline-coated gold nanocrystals. Adv. Mater., 29, 1604862(2017).

    [306] J. Peng et al. Scalable electrochromic nanopixels using plasmonics. Sci. Adv., 5, eaaw2205(2019).

    [307] W. Lu et al. Electrochemical switching of plasmonic colors based on polyaniline-coated plasmonic nanocrystals. ACS Appl. Mater. Interfaces, 12, 17733(2020).

    [308] W. Lu et al. Active Huygens’ metasurface based on in-situ grown conductive polymer. Nanophotonics, 13, 39(2024).

    [309] D. De Jong et al. Electrically switchable metallic polymer metasurface device with gel polymer electrolyte. Nanophotonics, 12, 1397(2023).

    [310] Y. Yao et al. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett., 13, 1257(2013).

    [311] Y. Yao et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett., 14, 6526(2014).

    [312] A. Basiri et al. Ultrafast low-pump fluence all-optical modulation based on graphene-metal hybrid metasurfaces. Light Sci. Appl., 11, 102(2022).

    [313] N. Dabidian et al. Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces. ACS Photonics, 2, 216(2015).

    [314] N. Dabidian et al. Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces. Nano Lett., 16, 3607(2016).

    [315] M. C. Sherrott et al. Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces. Nano Lett., 17, 3027(2017).

    [316] W. Luo et al. Electrically switchable and tunable infrared light modulator based on functional graphene metasurface. Nanophotonics, 12, 1797(2023).

    [317] M. D. Feinstein, E. Almeida. Hybridization of graphene-gold plasmons for active control of mid-infrared radiation. Sci. Rep., 14, 6733(2024).

    [318] Z. Cai, Y. Liu. Near-infrared reflection modulation through electrical tuning of hybrid graphene metasurfaces. Adv. Opt. Mater., 10, 2102135(2022).

    [319] C. Shi, I. J. Luxmoore, G. R. Nash. Gate tunable graphene-integrated metasurface modulator for mid-infrared beam steering. Opt. Express, 27, 14577(2019).

    [320] Z. Sun, F. Huang, Y. Fu. Graphene-based active metasurface with more than 330° phase tunability operating at mid-infrared spectrum. Carbon, 173, 512(2021).

    [321] X. Chen et al. Electrically tunable absorber based on a graphene integrated lithium niobate resonant metasurface. Opt. Express, 29, 32796(2021).

    [322] R. Kumari et al. Tunable Van der Waal’s optical metasurfaces (VOMs) for biosensing of multiple analytes. Opt. Express, 29, 25800(2021).

    [323] S. Kim et al. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays. Nat. Commun., 7, 12323(2016).

    [324] Z. H. Chen et al. Tunable metamaterial-induced transparency with gate-controlled on-chip graphene metasurface. Opt. Express, 24, 29216(2016).

    [325] S. Han et al. Complete complex amplitude modulation with electronically tunable graphene plasmonic metamolecules. ACS Nano, 14, 1166(2020).

    [326] Q. Wu et al. Dual-parameter controlled reconfigurable metasurface for enhanced terahertz beamforming via inverse design method. Phys. Scr., 99, 065517(2024).

    [327] F. Han et al. Tunable mid-infrared multi-resonant graphene-metal hybrid metasurfaces. Adv. Opt. Mater., 12, 2303085(2024).

    [328] M. Jablan, H. Buljan, M. Soljacic. Plasmonics in graphene at infrared frequencies. Phys. Rev. B, 80, 245435(2009).

    [329] L. Ju et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol., 6, 630(2011).

    [330] F. H. L. Koppens, D. E. Chang, F. Javier Garcia de Abajo. Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett., 11, 3370(2011).

    [331] Z. Fei et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 487, 82(2012).

    [332] A. N. Grigorenko, M. Polini, K. S. Novoselov. Graphene plasmonics. Nat. Photonics, 6, 749(2012).

    [333] T. Low, P. Avouris. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano, 8, 1086(2014).

    [334] P. A. Huidobro et al. Graphene as a tunable anisotropic or isotropic plasmonic metasurface. ACS Nano, 10, 5499(2016).

    [335] Z. Fang et al. Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano, 7, 2388(2013).

    [336] Z. Fang et al. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett., 14, 299(2014).

    [337] Z. Li et al. Graphene plasmonic metasurfaces to steer infrared light. Sci. Rep., 5, 12423(2015).

    [338] Z. Miao et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys. Rev. X, 5, 041027(2015).

    [339] H. Cheng et al. Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces. Adv. Opt. Mater., 3, 1744(2015).

    [340] P. C. Wu, N. Papasimakis, D. P. Tsai. Self-affine graphene metasurfaces for tunable broadband absorption. Phys. Rev. Appl., 6, 044019(2016).

    [341] C. Wang et al. Dynamically tunable deep subwavelength high-order anomalous reflection using graphene metasurfaces. Adv. Opt. Mater., 6, 1701047(2018).

    [342] N. Mou et al. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces. Opt. Express, 26, 11728(2018).

    [343] Q. Xing et al. Tunable graphene split-ring resonators. Phys. Rev. Appl., 13, 041006(2020).

    [344] D. Chen et al. Tunable polarization-preserving vortex beam generator based on diagonal cross-shaped graphene structures at terahertz frequency. Adv. Opt. Mater., 11, 2300182(2023).

    [345] H. Park et al. Electrically tunable THz graphene metasurface wave retarders. Nanophotonics, 12, 2553(2023).

    [346] S. Wei et al. A varifocal graphene metalens for broadband zoom imaging covering the entire visible region. ACS Nano, 15, 4769(2021).

    [347] Q. Hu et al. Graphene metapixels for dynamically switchable structural color. ACS Nano, 15, 8930(2021).

    [348] J. Van De Groep et al. Exciton resonance tuning of an atomically thin lens. Nat. Photonics, 14, 426(2020).

    [349] M. Li et al. Excitonic beam steering in an active van der Waals metasurface. Nano Lett., 23, 2771(2023).

    [350] X. Huang et al. Black phosphorus carbide as a tunable anisotropic plasmonic metasurface. ACS Photonics, 5, 3116(2018).

    [351] M. C. Sherrott et al. Anisotropic quantum well electro-optics in few-layer black phosphorus. Nano Lett., 19, 269(2019).

    [352] S. Biswas et al. Broadband electro-optic polarization conversion with atomically thin black phosphorus. Science, 374, 448(2021).

    [353] H. Mohammadi Dinani, H. Mosallaei. Active tunable pulse shaping using MoS2-assisted all-dielectric metasurface. Adv. Photonics Res., 4, 2200207(2023).

    [354] H.-T. Chen et al. Active terahertz metamaterial devices. Nature, 444, 597(2006).

    [355] K. Y. Lee et al. Multiple p-n junction subwavelength gratings for transmission-mode electro-optic modulators. Sci. Rep., 7, 46508(2017).

    [356] P. P. Iyer et al. III–V heterojunction platform for electrically reconfigurable dielectric metasurfaces. ACS Photonics, 6, 1345(2019).

    [357] M. M. Salary, S. Farazi, H. Mosallaei. A dynamically modulated all-dielectric metasurface doublet for directional harmonic generation and manipulation in transmission. Adv. Opt. Mater., 7, 1900843(2019).

    [358] A. Forouzmand, H. Mosallaei. A tunable semiconductor-based transmissive metasurface: dynamic phase control with high transmission level. Laser Photonics Rev., 14, 1900353(2020).

    [359] H. U. Chae et al. GaAs mid-IR electrically tunable metasurfaces. Nano Lett., 24, 2581(2024).

    [360] J. Park et al. Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers. Sci. Rep., 5, 15754(2015).

    [361] T. Bhowmik et al. Dual-band electro-optic modulator based on tunable broadband metamaterial absorber. Opt. Laser Technol., 161, 109129(2023).

    [362] T. Bhowmik, A. K. Chowdhary, D. Sikdar. Polarization- and angle-insensitive tunable metasurface for electro-optic modulation. IEEE Photonics Technol. Lett., 35, 879(2023).

    [363] J. Park et al. Dynamic reflection phase and polarization control in metasurfaces. Nano Lett., 17, 407(2017).

    [364] A. Cala Lesina et al. Tunable plasmonic metasurfaces for optical phased arrays. IEEE J. Sel. Top. Quantum Electron., 27, 1(2021).

    [365] P. C. Wu et al. Near-infrared active metasurface for dynamic polarization conversion. Adv. Opt. Mater., 9, 2100230(2021).

    [366] M. R. Eskandari, M. Ali Shameli, R. Safian. Analysis of an electrically reconfigurable metasurface for manipulating polarization of near-infrared light. J. Opt. Soc. Am. B, 39, 145(2022).

    [367] T. Bhowmik, J. Gupta, D. Sikdar. Electro-tunable metasurface for tri-state dynamic polarization switching at near-infrared wavelengths. J. Phys. Condens. Matter, 35, 395701(2023).

    [368] Y.-W. Huang et al. Gate-tunable conducting oxide metasurfaces. Nano Lett., 16, 5319(2016).

    [369] G. K. Shirmanesh et al. Electro-optically tunable multifunctional metasurfaces. ACS Nano, 14, 6912(2020).

    [370] J. Zhang et al. Gate-tunable optical filter based on conducting oxide metasurface heterostructure. Opt. Lett., 44, 3653(2019).

    [371] Y. Lee et al. High-speed transmission control in gate-tunable metasurfaces using hybrid plasmonic waveguide mode. Adv. Opt. Mater., 8, 2001256(2020).

    [372] Z. T. Xie et al. Tunable electro- and all-optical switch based on epsilon-near-zero metasurface. IEEE Photonics J., 12, 4501510(2020).

    [373] A. Forouzmand, H. Mosallaei. Tunable two dimensional optical beam steering with reconfigurable indium tin oxide plasmonic reflectarray metasurface. J. Opt., 18, 125003(2016).

    [374] S. I. Kim et al. Two-dimensional beam steering with tunable metasurface in infrared regime. Nanophotonics, 11, 2719(2022).

    [375] R. Sokhoyan et al. Electrically tunable conducting oxide metasurfaces for high power applications. Nanophotonics, 12, 239(2023).

    [376] J. Kim et al. Dynamic control of nanocavities with tunable metal oxides. Nano Lett., 18, 740(2018).

    [377] A. Forouzmand, H. Mosallaei. Real-time controllable and multifunctional metasurfaces utilizing indium tin oxide materials: a phased array perspective. IEEE Trans. Nanotechnol., 16, 296(2017).

    [378] C. A. Riedel et al. Nanoscale modeling of electro-plasmonic tunable devices for modulators and metasurfaces. Opt. Express, 25, 10031(2017).

    [379] Y. Lee et al. Electrically tunable multifunctional metasurface for integrating phase and amplitude modulation based on hyperbolic metamaterial substrate. Opt. Express, 26, 32063(2018).

    [380] Z. Wang, P. Zhou, G. Zheng. Electrically switchable highly efficient epsilon-near-zero metasurfaces absorber with broadband response. Results Phys., 14, 102376(2019).

    [381] J. Hwang, J. W. Roh. Electrically tunable two-dimensional metasurfaces at near-infrared wavelengths. Opt. Express, 25, 25071(2017).

    [382] A. Nemati et al. Ultra-high extinction-ratio light modulation by electrically tunable metasurface using dual epsilon-near-zero resonances. Opto-Electron. Adv., 4, 200088(2021).

    [383] T. Bhowmik, D. Sikdar. Electrically tunable metasurface for dual-band spatial light modulation using the epsilon-near-zero effect. Opt. Lett., 47, 4993(2022).

    [384] S. J. Kim, M. L. Brongersma. Active flat optics using a guided mode resonance. Opt. Lett., 42, 5(2017).

    [385] W. Ma et al. Active quasi-BIC metasurfaces assisted by epsilon-near-zero materials. Opt. Express, 31, 13125(2023).

    [386] A. Forouzmand et al. A tunable multigate indium-tin-oxide-assisted all-dielectric metasurface. Adv. Opt. Mater., 6, 1701275(2018).

    [387] A. Forouzmand et al. Tunable all-dielectric metasurface for phase modulation of the reflected and transmitted light via permittivity tuning of indium tin oxide. Nanophotonics, 8, 415(2019).

    [388] A. Forouzmand, H. Mosallaei. Electro-optical amplitude and phase modulators based on tunable guided-mode resonance effect. ACS Photonics, 6, 2860(2019).

    [389] A. Forouzmand, H. Mosallaei. Tunable dual-band amplitude modulation with a double epsilon-near-zero metasurface. J. Opt., 22, 094001(2020).

    [390] R. Sabri, A. Forouzmand, H. Mosallaei. Multi-wavelength voltage-coded metasurface based on indium tin oxide: independently and dynamically controllable near-infrared multi-channels. Opt. Express, 28, 3464(2020).

    [391] R. Sabri, M. M. Salary, H. Mosallaei. Broadband continuous beam-steering with time-modulated metasurfaces in the near-infrared spectral regime. APL Photonics, 6, 086109(2021).

    [392] G. Kafaie Shirmanesh et al. Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability. Nano Lett., 18, 2957(2018).

    [393] J. Park et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol., 16, 69(2021).

    [394] Y. Xiao, H. Qian, Z. Liu. Nonlinear metasurface based on giant optical Kerr response of gold quantum wells. ACS Photonics, 5, 1654(2018).

    [395] J. Zhou et al. Kerr metasurface enabled by metallic quantum wells. Nano Lett., 21, 330(2021).

    [396] D. Li et al. Ultrafast tunable scattering of optical antennas driven by metallic quantum wells. ACS Photonics, 9, 2346(2022).

    [397] H. Ma et al. Tunable metasurface based on plasmonic quasi bound state in the continuum driven by metallic quantum wells. Adv. Opt. Mater., 11, 2202584(2023).

    [398] L. Bibbò et al. Tunable narrowband antireflection optical filter with a metasurface. Photonics Res., 5, 500(2017).

    [399] A. Smolyaninov et al. Programmable plasmonic phase modulation of free-space wavefronts at gigahertz rates. Nat. Photonics, 13, 431(2019).

    [400] A. Karvounis et al. Electro-optic metasurfaces based on barium titanate nanoparticle films. Adv. Opt. Mater., 8, 2000623(2020).

    [401] C. Damgaard-Carstensen et al. Electrical tuning of Fresnel lens in reflection. ACS Photonics, 8, 1576(2021).

    [402] C. Damgaard-Carstensen, M. Thomaschewski, S. I. Bozhevolnyi. Electro-optic metasurface-based free-space modulators. Nanoscale, 14, 11407(2022).

    [403] A. Hoblos et al. Low driving voltage lithium niobate metasurface electro-optical modulator operating in free space. Opt. Express, 30, 48103(2022).

    [404] A. Weiss et al. Tunable metasurface using thin-film lithium niobate in the telecom regime. ACS Photonics, 9, 605(2022).

    [405] Y. Ju et al. Hybrid resonance metasurface for a lithium niobate electro-optical modulator. Opt. Lett., 47, 5905(2022).

    [406] C. Damgaard-Carstensen, S. I. Bozhevolnyi. Nonlocal electro-optic metasurfaces for free-space light modulation. Nanophotonics, 12, 2953(2023).

    [407] Y. Ju et al. The electro-optic spatial light modulator of lithium niobate metasurface based on plasmonic quasi-bound states in the continuum. Nanoscale, 15, 13965(2023).

    [408] D. Barton, M. Lawrence, J. Dionne. Wavefront shaping and modulation with resonant electro-optic phase gradient metasurfaces. Appl. Phys. Lett., 118, 071104(2021).

    [409] L. Wang, I. Shadrivov. Electro-optic metasurfaces. Opt. Express, 30, 35361(2022).

    [410] H. Xia, Z. Li, C. Chen. Toroidal dipole Fano resonances driven by bound states in the continuum of lithium niobate metasurface for efficient electro-optic modulation. Opt. Commun., 554, 130178(2024).

    [411] H. Weigand et al. Enhanced electro-optic modulation in resonant metasurfaces of lithium niobate. ACS Photonics, 8, 3004(2021).

    [412] N. Xu et al. Electrically-driven zoom metalens based on dynamically controlling the Phase of barium titanate (BTO) column antennas. Nanomaterials, 11, 729(2021).

    [413] T. Naeem et al. Engineering tunability through electro-optic effects to manifest a multifunctional metadevice. RSC Adv., 11, 13220(2021).

    [414] Y. Xu et al. Quasi-BIC based low-voltage phase modulation on lithium niobite metasurface. IEEE Photonics Technol. Lett., 34, 1077(2022).

    [415] Y. Ju et al. Polarization independent lithium niobate electro-optic modulator based on guided mode resonance. Opt. Mater., 148, 114928(2024).

    [416] D. N. Nikogosyan. Nonlinear Optical Crystals: A Complete Survey(2005).

    [417] J. Zhang et al. Electrical tuning of metal-insulator-metal metasurface with electro-optic polymer. Appl. Phys. Lett., 113, 231102(2018).

    [418] J. Zhang et al. High-speed metasurface modulator using perfectly absorptive bimodal plasmonic resonance. APL Photonics, 8, 121304(2023).

    [419] J. Zhang et al. Active metasurface modulator with electro-optic polymer using bimodal plasmonic resonance. Opt. Express, 25, 30304(2017).

    [420] X. Sun et al. Electro-optic polymer and silicon nitride hybrid spatial light modulators based on a metasurface. Opt. Express, 29, 25543(2021).

    [421] X. Sun, F. Qiu. Polarization independent high-speed spatial modulators based on an electro-optic polymer and silicon hybrid metasurface. Photonics Res., 10, 2893(2022).

    [422] X. Sun et al. Design and theoretical characterization of high speed metasurface modulators based on electro-optic polymer. Opt. Express, 29, 9207(2021).

    [423] X. Sun et al. Manipulating dual bound states in the continuum for efficient spatial light modulator. Nano Lett., 22, 9982(2022).

    [424] L. Zhang et al. Plasmonic metafibers electro-optic modulators. Light Sci. Appl., 12, 198(2023).

    [425] I.-C. Benea-Chelmus et al. Electro-optic spatial light modulator from an engineered organic layer. Nat. Commun., 12, 5928(2021).

    [426] I.-C. Benea-Chelmus et al. Gigahertz free-space electro-optic modulators based on Mie resonances. Nat. Commun., 13, 3170(2022).

    [427] T. Zheng et al. Dynamic light manipulation via silicon-organic slot metasurfaces. Nat. Commun., 15, 1557(2024).

    [428] E. L. Wooten et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron., 6, 69(2000).

    [429] G. Poberaj et al. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev., 6, 488(2012).

    [430] C. Wang et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).

    [431] M. He et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond. Nat. Photonics, 13, 359(2019).

    [432] D. Zhu et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242(2021).

    [433] W. P. Eaton, J. H. Smith. Micromachined pressure sensors: review and recent developments. Smart Mater. Struct., 6, 530(1997).

    [434] J. W. Judy. Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Mater. Struct., 10, 1115(2001).

    [435] S. Trolier-McKinstry, P. Muralt. Thin film piezoelectrics for MEMS. J. Electroceramics, 12, 7(2004).

    [436] K. L. Ekinci, M. L. Roukes. Nanoelectromechanical systems. Rev. Sci. Instrum., 76, 061101(2005).

    [437] R. Bogue. Recent developments in MEMS sensors: a review of applications, markets and technologies. Sens. Rev., 33, 300(2013).

    [438] C. J. Chang-Hasnain, W. Yang. High-contrast gratings for integrated optoelectronics. Adv. Opt. Photonics, 4, 379(2012).

    [439] A. G. Krause et al. A high-resolution microchip optomechanical accelerometer. Nat. Photonics, 6, 768(2012).

    [440] S. T. S. Holmstrom, U. Baran, H. Urey. MEMS laser scanners: a review. J. Microelectromechanical Syst., 23, 259(2014).

    [441] B.-W. Yoo et al. A 32 × 32 optical phased array using polysilicon sub-wavelength high-contrast-grating mirrors. Opt. Express, 22, 19029(2014).

    [442] Z. Ren et al. Leveraging of MEMS technologies for optical metamaterials applications. Adv. Opt. Mater., 8, 1900653(2020).

    [443] J.-Y. Ou et al. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nat. Nanotechnol., 8, 252(2013).

    [444] K. Yamaguchi et al. Electrically driven plasmon chip: active plasmon filter. Appl. Phys. Express, 7, 012201(2014).

    [445] D. Herle et al. Broadband mechanically tunable metasurface reflectivity modulator in the visible spectrum. ACS Photonics, 10, 1882(2023).

    [446] J. Valente et al. Reconfiguring photonic metamaterials with currents and magnetic fields. Appl. Phys. Lett., 106, 111905(2015).

    [447] T. Shimura et al. Birefringent reconfigurable metasurface at visible wavelengths by MEMS nanograting. Appl. Phys. Lett., 113, 171905(2018).

    [448] H. Kwon, T. Zheng, A. Faraon. Nano-electromechanical tuning of dual-mode resonant dielectric metasurfaces for dynamic amplitude and phase modulation. Nano Lett., 21, 2817(2021).

    [449] H. Kwon, T. Zheng, A. Faraon. Nano-electromechanical spatial light modulator enabled by asymmetric resonant dielectric metasurfaces. Nat. Commun., 13, 5811(2022).

    [450] T. Zheng, H. Kwon, A. Faraon. Nanoelectromechanical tuning of high-Q slot metasurfaces. Nano Lett., 23, 5588(2023).

    [451] H. Kwon, A. Faraon. NEMS-tunable dielectric chiral metasurfaces. ACS Photonics, 8, 2980(2021).

    [452] J.-H. Song et al. Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer. Nat. Commun., 12, 48(2021).

    [453] A. L. Holsteen, A. F. Cihan, M. L. Brongersma. Temporal color mixing and dynamic beam shaping with silicon metasurfaces. Science, 365, 257(2019).

    [454] C. Meng et al. Dynamic piezoelectric MEMS-based optical metasurfaces. Sci. Adv., 7, eabg5639(2021).

    [455] P. C. V. Thrane et al. MEMS tunable metasurfaces based on gap plasmon or Fabry–Pérot resonances. Nano Lett., 22, 6951(2022).

    [456] C. Meng et al. Full-range birefringence control with piezoelectric MEMS-based metasurfaces. Nat. Commun., 13, 2071(2022).

    [457] Y. Deng et al. MEMS-integrated metasurfaces for dynamic linear polarizers. Optica, 11, 326(2024).

    [458] F. Ding et al. Electrically tunable topological phase transition in non-Hermitian optical MEMS metasurfaces. Sci. Adv., 10, eadl4661(2024).

    [459] F. Monticone et al. Trapping light in plain sight: embedded photonic eigenstates in zero-index metamaterials. Laser Photonics Rev., 12, 1700220(2018).

    [460] A. Berkhout, A. F. Koenderink. Perfect absorption and phase singularities in plasmon antenna array etalons. ACS Photonics, 6, 2917(2019).

    [461] A. Krasnok et al. Anomalies in light scattering. Adv. Opt. Photonics, 11, 892(2019).

    [462] M. Liu et al. Evolution and nonreciprocity of loss-induced topological phase singularity pairs. Phys. Rev. Lett., 127, 266101(2021).

    [463] Z. Sakotic et al. Topological scattering singularities and embedded eigenstates for polarization control and sensing applications. Photonics Res., 9, 1310(2021).

    [464] R. Colom et al. Crossing of the branch cut: the topological origin of a universal 2π-phase retardation in non-Hermitian metasurfaces. Laser Photonics Rev., 17, 2200976(2023).

    [465] M. Elsawy et al. Universal active metasurfaces for ultimate wavefront molding by manipulating the reflection singularities. Laser Photonics Rev., 17, 2200880(2023).

    [466] C. Guo et al. Singular topology of scattering matrices. Phys. Rev. B, 108, 155418(2023).

    [467] M. Liu et al. Spectral phase singularity and topological behavior in perfect absorption. Phys. Rev. B, 107, L241403(2023).

    [468] E. Mikheeva et al. Asymmetric phase modulation of light with parity-symmetry broken metasurfaces. Optica, 10, 1287(2023).

    [469] Z. Sakotic et al. Non-Hermitian control of topological scattering singularities emerging from bound states in the continuum. Laser Photonics Rev., 17, 2200308(2023).

    [470] A. She et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv., 4, eaap9957(2018).

    [471] T. Roy et al. Dynamic metasurface lens based on MEMS technology. APL Photonics, 3, 021302(2018).

    [472] E. Arbabi et al. MEMS-tunable dielectric metasurface lens. Nat. Commun., 9, 812(2018).

    [473] C. A. Dirdal et al. MEMS-tunable dielectric metasurface lens using thin-film PZT for large displacements at low voltages. Opt. Lett., 47, 1049(2022).

    [474] Z. Han et al. MEMS-actuated metasurface Alvarez lens. Microsyst. Nanoeng., 6, 79(2020).

    [475] Z. Han et al. Millimeter-scale focal length tuning with MEMS-integrated meta-optics employing high-throughput fabrication. Sci. Rep., 12, 5385(2022).

    [476] S. Chen et al. Electromechanically reconfigurable optical nano-kirigami. Nat. Commun., 12, 1299(2021).

    [477] X. Hong et al. Manipulation of fractal nano-kirigami by capillary and electrostatic forces. Adv. Opt. Mater., 11, 2202150(2023).

    [478] Y. Han et al. Reprogrammable optical metasurfaces by electromechanical reconfiguration. Opt. Express, 29, 30751(2021).

    [479] X. Liu et al. Reconfigurable plasmonic nanoslits and tuneable Pancharatnam-Berry geometric phase based on electromechanical nano-kirigami [Invited]. Opt. Mater. Express, 11, 3381(2021).

    [480] Z. Han et al. MEMS cantilever–controlled plasmonic colors for sustainable optical displays. Sci. Adv., 8, eabn0889(2022).

    [481] J. Lu, J. Vučković. Nanophotonic computational design. Opt. Express, 21, 13351(2013).

    [482] K. Yao, R. Unni, Y. Zheng. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale. Nanophotonics, 8, 339(2019).

    [483] Z. A. Kudyshev, V. M. Shalaev, A. Boltasseva. Machine learning for integrated quantum photonics. ACS Photonics, 8, 34(2021).

    [484] Z. Liu et al. Tackling photonic inverse design with machine learning. Adv. Sci., 8, 2002923(2021).

    [485] Z. A. Kudyshev et al. Machine learning-assisted global optimization of photonic devices. Nanophotonics, 10, 371(2020).

    [486] S. Krasikov et al. Intelligent metaphotonics empowered by machine learning. Opto-Electron. Adv., 5, 210147(2022).

    [487] M. K. Chen et al. Artificial intelligence in meta-optics. Chem. Rev., 122, 15356(2022).

    [488] J.-F. Masson, J. S. Biggins, E. Ringe. Machine learning for nanoplasmonics. Nat. Nanotechnol., 18, 111(2023).

    [489] I. Malkiel et al. Plasmonic nanostructure design and characterization via deep learning. Light Sci. Appl., 7, 60(2018).

    [490] S. So et al. Deep learning enabled inverse design in nanophotonics. Nanophotonics, 9, 1041(2020).

    [491] P. R. Wiecha et al. Deep learning in nano-photonics: inverse design and beyond. Photonics Res., 9, B182(2021).

    [492] W. Ma et al. Deep learning for the design of photonic structures. Nat. Photonics, 15, 77(2021).

    [493] S. Molesky et al. Inverse design in nanophotonics. Nat. Photonics, 12, 659(2018).

    [494] Z. Liu et al. Generative model for the inverse design of metasurfaces. Nano Lett., 18, 6570(2018).

    [495] N. Wang et al. Intelligent designs in nanophotonics: from optimization towards inverse creation. PhotoniX, 2, 22(2021).

    [496] Z. Li et al. Empowering metasurfaces with inverse design: principles and applications. ACS Photonics, 9, 2178(2022).

    [497] Z. Lin et al. Topology-optimized multilayered metaoptics. Phys. Rev. Appl., 9, 044030(2018).

    [498] Z. Lin et al. Topology optimization of freeform large-area metasurfaces. Opt. Express, 27, 15765(2019).

    [499] J. S. Jensen, O. Sigmund. Topology optimization for nano-photonics. Laser Photonics Rev., 5, 308(2011).

    [500] R. E. Christiansen, O. Sigmund. Inverse design in photonics by topology optimization: tutorial. J. Opt. Soc. Am. B, 38, 496(2021).

    [501] T. Phan et al. High-efficiency, large-area, topology-optimized metasurfaces. Light Sci. Appl., 8, 48(2019).

    [502] R. Ramprasad et al. Machine learning in materials informatics: recent applications and prospects. Npj Comput. Mater., 3, 54(2017).

    [503] G. L. W. Hart et al. Machine learning for alloys. Nat. Rev. Mater., 6, 730(2021).

    [504] S. Zhang et al. Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective. Nanophotonics, 10, 259(2021).

    [505] Z. Li et al. Metasurfaces for bioelectronics and healthcare. Nat. Electron., 4, 382(2021).

    [506] Y. Luo et al. Metasurface-based abrupt autofocusing beam for biomedical applications. Small Methods, 6, 2101228(2022).

    [507] M. Pahlevaninezhad et al. Metasurface-based bijective illumination collection imaging provides high-resolution tomography in three dimensions. Nat. Photonics, 16, 203(2022).

    [508] G.-Y. Lee et al. Metasurface eyepiece for augmented reality. Nat. Commun., 9, 4562(2018).

    [509] S. Lan et al. Metasurfaces for near-eye augmented reality. ACS Photonics, 6, 864(2019).

    [510] J. Xiong et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci. Appl., 10, 216(2021).

    [511] Y. Shi et al. Augmented reality enabled by on-chip meta-holography multiplexing. Laser Photonics Rev., 16, 2100638(2022).

    [512] W.-J. Joo, M. L. Brongersma. Creating the ultimate virtual reality display. Science, 377, 1376(2022).

    [513] A. S. Solntsev, G. S. Agarwal, Y. S. Kivshar. Metasurfaces for quantum photonics. Nat. Photonics, 15, 327(2021).

    [514] F. Ding, S. I. Bozhevolnyi. Advances in quantum meta-optics. Mater. Today, 71, 63(2023).

    [515] J. Ma et al. Engineering quantum light sources with flat optics. Adv. Mater., 36, 2313589(2024).

    [516] J. Zhang, Y. Kivshar. Quantum metaphotonics: Recent advances and perspective. APL Quantum, 1, 020902(2024).

    [517] N. Somaschi et al. Near-optimal single-photon sources in the solid state. Nat. Photonics, 10, 340(2016).

    [518] S. K. H. Andersen, S. Kumar, S. I. Bozhevolnyi. Ultrabright linearly polarized photon generation from a nitrogen vacancy center in a nanocube dimer antenna. Nano Lett., 17, 3889(2017).

    [519] T. T. Tran et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett., 17, 2634(2017).

    [520] S. I. Bogdanov et al. Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas. Nano Lett., 18, 4837(2018).

    [521] Y. Chen et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat. Commun., 9, 2994(2018).

    [522] J. Liu et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol., 14, 586(2019).

    [523] Y. Kan et al. Metasurface-enabled generation of circularly polarized single photons. Adv. Mater., 32, 1907832(2020).

    [524] C. Wu et al. Room-temperature on-chip orbital angular momentum single-photon sources. Sci. Adv., 8, eabk3075(2022).

    [525] G. Marino et al. Spontaneous photon-pair generation from a dielectric nanoantenna. Optica, 6, 1416(2019).

    [526] L. Li et al. Metalens-array–based high-dimensional and multiphoton quantum source. Science, 368, 1487(2020).

    [527] T. Santiago-Cruz et al. Photon pairs from resonant metasurfaces. Nano Lett., 21, 4423(2021).

    [528] J. Zhang et al. Spatially entangled photon pairs from lithium niobate nonlocal metasurfaces. Sci. Adv., 8, eabq4240(2022).

    [529] T. Stav et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science, 361, 1101(2018).

    [530] K. Wang et al. Quantum metasurface for multiphoton interference and state reconstruction. Science, 361, 1104(2018).

    [531] P. Georgi et al. Metasurface interferometry toward quantum sensors. Light Sci. Appl., 8, 70(2019).

    [532] Q. Li et al. A non-unitary metasurface enables continuous control of quantum photon–photon interactions from bosonic to fermionic. Nat. Photonics, 15, 267(2021).

    [533] Y.-J. Gao et al. Multichannel distribution and transformation of entangled photons with dielectric metasurfaces. Phys. Rev. Lett., 129, 023601(2022).

    [534] Z.-X. Li et al. High-dimensional entanglement generation based on a Pancharatnam–Berry phase metasurface. Photonics Res., 10, 2702(2022).

    [535] D. Zhang et al. All-optical modulation of quantum states by nonlinear metasurface. Light Sci. Appl., 11, 58(2022).

    [536] M. Wang et al. Characterization of orbital angular momentum quantum states empowered by metasurfaces. Nano Lett., 23, 3921(2023).

    [537] D. Komisar et al. Multiple channelling single-photon emission with scattering holography designed metasurfaces. Nat. Commun., 14, 6253(2023).

    [538] W. J. M. Kort-Kamp, A. K. Azad, D. A. R. Dalvit. Space-time quantum metasurfaces. Phys. Rev. Lett., 127, 043603(2021).

    [539] B. Leng et al. Meta-device: advanced manufacturing. Light Adv. Manuf., 5, 117(2024).

    [540] J.-S. Park et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett., 19, 8673(2019).

    [541] T. Hu et al. CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging. Nanophotonics, 9, 823(2020).

    [542] L. Zhang et al. High-efficiency, 80 mm aperture metalens telescope. Nano Lett., 23, 51(2023).

    [543] J.-S. Park et al. All-glass 100 mm diameter visible metalens for imaging the Cosmos. ACS Nano, 18, 3187(2024).

    [544] G. Yoon et al. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun., 11, 2268(2020).

    [545] G. Yoon et al. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano, 15, 698(2021).

    [546] V. J. Einck et al. Scalable nanoimprint lithography process for manufacturing visible metasurfaces composed of high aspect ratio TiO2 meta-atoms. ACS Photonics, 8, 2400(2021).

    [547] M. K. Chen et al. Chiral-magic angle of nanoimprint meta-device. Nanophotonics, 12, 2479(2023).

    [548] J. Kim et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nat. Mater., 22, 474(2023).

    [549] E. Højlund-Nielsen et al. Plasmonic colors: toward mass production of metasurfaces. Adv. Mater. Technol., 1, 1600054(2016).

    [550] S. Murthy et al. Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method. Nanoscale, 9, 14280(2017).

    [551] Y. Zhai et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science, 355, 1062(2017).

    [552] K.-T. Lin et al. Highly efficient flexible structured metasurface by roll-to-roll printing for diurnal radiative cooling. eLight, 3, 22(2023).

    [553] C. Jung, E. Lee, J. Rho. The rise of electrically tunable metasurfaces. Sci. Adv., 10, eado8964(2024).

    Fei Ding, Chao Meng, Sergey I. Bozhevolnyi, "Electrically tunable optical metasurfaces," Photon. Insights 3, R07 (2024)
    Download Citation