• Optical Instruments
  • Vol. 46, Issue 4, 81 (2024)
Xiaoran LI* and Fenghua LI
Author Affiliations
  • Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.202403110048 Cite this Article
    Xiaoran LI, Fenghua LI. Ensuring the yield of mass production in extreme ultraviolet lithography: the pellicle for mask[J]. Optical Instruments, 2024, 46(4): 81 Copy Citation Text show less
    References

    [1] ZOLDESI C, BAL K, BLUM B, et al. Progress on EUV pellicle development[C]Proceedings of SPIE 9048, Extreme Ultraviolet (EUV) Lithography V. San Jose: SPIE, 2014: 90481N.

    [2] SHROFF Y A, GOLDSTEIN M, RICE B, et al. EUV pellicle development f mask defect control[C]Proceedings of SPIE 6151, Emerging Lithographic Technologies X. San Jose: SPIE, 2006: 615104.

    [3] PIAZZA R. Thermophoresis: moving particles with thermal gradients[J]. Soft Matter, 4, 1740-1744(2008).

    [4] SCACCABAROZZI L, SMITH D, DIAGO P R, et al. Investigation of EUV pellicle feasibility[C]Proceedings of SPIE 8679, Extreme Ultraviolet (EUV) Lithography IV. San Jose: SPIE, 2013: 867904.

    [5] KIM S G, SHIN D W, KIM T et al. Large-scale freestanding nanometer-thick graphite pellicles for mass production of nanodevices beyond 10 nm[J]. Nanoscale, 7, 14608-14611(2015).

    [6] KUO C T, HUNG K, LEE C, et al. Investigation of EUV pellicle mechanical stress within EUV pod[C]Proceedings of SPIE 11908, Photomask Japan 2021: XXVII Symposium on Photomask NextGeneration Lithography Mask Technology. SPIE, 2021: 119080G.

    [7] WI S J, KIM W J, KIM H et al. Study on ZrSi2 as a candidate material for extreme ultraviolet pellicles[J]. Membranes, 13, 731(2023).

    [8] LEE J U, VANPAEMEL J, POLLENTIER I, et al. Introducing the EUV CNT pellicle[C]Proceedings of SPIE 9985, Photomask Technology 2016. San Jose: SPIE, 2016: 99850C.

    [9] GALLAGHER E E, VANPAEMEL J, POLLENTIER I, et al. Properties perfmance of EUVL pellicle membranes[C]Proceedings of SPIE 9635, Photomask Technology 2015. Monterey: SPIE, 2015: 96350X.

    [10] BAN C H, KANG I H, CHOI W Y et al. Reduced lifetime of EUV pellicles due to defects[J]. Journal of Micro/Nanopatterning, Materials, and Metrology, 20, 034401(2021).

    [11] GOLDFARB D L, BLOOMFIELD M O, COLBURN M. Thermomechanical behavi of EUV pellicle under dynamic exposure conditions[C]Proceedings of SPIE 9776, Extreme Ultraviolet (EUV) Lithography VII. San Jose: SPIE, 2016: 977621.

    [12] RAMIREZ B J A, KRASNIKOV D V, GUBAREV V V et al. Renewable single-walled carbon nanotube membranes for extreme ultraviolet pellicle applications[J]. Carbon, 198, 364-370(2022).

    [13] NAM K B, HU Q C, YEO J H et al. Fabrication of a 100 × 100 mm2 nanometer-thick graphite pellicle for extreme ultraviolet lithography by a peel-off and camphor-supported transfer approach[J]. Nanoscale Advances, 4, 3824-3831(2022).

    [14] VAN DE KERKHOF M, WAIBLINGER M, WEBER J, et al. Particle removal tool to repair particle defects on EUV reticles[C]Proceedings of SPIE 11609, Extreme Ultraviolet (EUV) Lithography XII. SPIE, 2021: 116090N.

    [15] SAKURAI I, SHIRASAKI T, KASHIDA M, et al. Pellicle f ArF excimer laser photolithography[C]Proceedings of SPIE 3748, Photomask XRay Mask Technology VI. Yokohama: SPIE, 1999: 176 − 187.

    [16] POLLENTIER I, VANPAEMEL J, LEE J U, et al. EUV lithography imaging using novel pellicle membranes[C]Proceedings of SPIE 9776, Extreme Ultraviolet (EUV) Lithography VII. San Jose: SPIE, 2016: 977620.

    [17] CHKHALO N I, DROZDOV M N, KLUENKOV E B et al. Free-standing spectral purity filters for extreme ultraviolet lithography[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 11, 021115(2012).

    [18] GOLDFARB D L. Fabrication of a fullsize EUV pellicle based on silicon nitride[C]Proceedings of SPIE 9635, Photomask Technology 2015. Monterey: SPIE, 2015: 96350A.

    [19] CHOI H W, NAM K B, SHIN D W. Graphite pellicle: physical shield for next-generation EUV lithography technology[J]. Advanced Materials Interfaces, 10, 2202489(2023).

    [20] POLLENTIER I, LEE J U, TIMMERMANS M, et al. Novel membrane solutions f the EUV pellicle: better not[C]Proceedings of SPIE 10143, Extreme Ultraviolet (EUV) Lithography VIII. San Jose: SPIE, 2017: 101430L.

    [21] WI S J, JANG Y J, KIM H et al. Investigation of the resistivity and emissivity of a pellicle membrane for EUV lithography[J]. Membranes, 12, 367(2022).

    [22] TIMMERMANS M Y, POLLENTIER I, KORYTOV M et al. Carbon nanotube EUV pellicle tunability and performance in a scanner-like environment[J]. Journal of Micro/Nanopatterning, Materials, and Metrology, 20, 031010(2021).

    [23] TIMMERMANS M Y, POLLENTIER I, LEE J U, et al. CNT EUV pellicle: moving towards a fullsize solution[C]Proceedings of SPIE 10451, Photomask Technology 2017. Monterey: SPIE, 2017: 104510P.

    [24] POLLENTIER I, TIMMERMANS M Y, HUYGHEBAERT C, et al. The EUV CNT pellicle: balancing material properties to optimize perfmance[C]Proceedings of SPIE 11323, Extreme Ultraviolet (EUV) Lithography XI. San Jose: SPIE, 2020: 113231G.

    [25] SHIN H G, OH H K. Extremeultraviolet pellicle durability comparison f better lifetime[C]Proceedings of SPIE 11147, International Conference on Extreme Ultraviolet Lithography 2019. Monterey: SPIE, 2019: 111470U.

    [26] KIM T S, SHIN D W, KIM S G et al. Large area nanometer thickness graphite freestanding film without transfer process[J]. Chemical Physics Letters, 690, 101-104(2017).

    [27] DAHAL A, BATZILL M. Graphene–nickel interfaces: a review[J]. Nanoscale, 6, 2548-2562(2014).

    [28] LI X W, CAI W W, COLOMBO L et al. Evolution of graphene growth on Ni and Cu by carbon isotope labeling[J]. Nano Letters, 9, 4268-4272(2009).

    [29] CHAE S J, GÜNEŞ F, KIM K K et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation[J]. Advanced Materials, 21, 2328-2333(2009).

    [30] HU Q C, KIM S G, SHIN D W et al. Large-scale nanometer-thickness graphite films synthesized on polycrystalline Ni foils by two-stage chemical vapor deposition process[J]. Carbon, 113, 309-317(2017).

    [31] KIM S G, HU Q C, NAM K B et al. Formation process of graphite film on Ni substrate with improved thickness uniformity through precipitation control[J]. Chemical Physics Letters, 698, 157-162(2018).

    [32] HU Q C, KIM S G, NAM K B et al. A way to improve the uniformity of nanometer-thickness graphite film synthesized on polycrystalline Ni substrate: from large grain to small grain[J]. Carbon, 144, 410-416(2019).

    [33] LI X S, CAI W W, AN J et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 324, 1312-1314(2009).

    [34] NAM K B, YEO J H, HU Q C et al. Fabrication of extreme ultraviolet lithography pellicle with nanometer-thick graphite film by sublimation of camphor supporting layer[J]. Nanotechnology, 32, 465301(2021).

    [35] LIN Y C, LU C C, YEH C H et al. Graphene annealing: how clean can it be?[J]. Nano Letters, 12, 414-419(2011).

    [36] HAN Y Y, ZHANG L, ZHANG X J et al. Clean surface transfer of graphene films via an effective sandwich method for organic light-emitting diode applications[J]. Journal of Materials Chemistry C, 2, 201-207(2014).

    [37] ZHANG Z K, DU J H, ZHANG D D et al. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes[J]. Nature Communications, 8, 14560(2017).

    [38] KIM H H, KANG B, SUK J W et al. Clean transfer of wafer-scale graphene via liquid phase removal of polycyclic aromatic hydrocarbons[J]. ACS Nano, 9, 4726-4733(2015).

    [39] KASKELA A, NASIBULIN A G, TIMMERMANS M Y et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique[J]. Nano Letters, 10, 4349-4355(2010).

    [40] ROMANOV S A, ALEKSEEVA A A, KHABUSHEV E M et al. Rapid, efficient, and non-destructive purification of single-walled carbon nanotube films from metallic impurities by Joule heating[J]. Carbon, 168, 193-200(2020).

    [41] LIMA M D, UEDA T, PLATA L, et al. Ultralow density, nanostructured freesting films f EUV Pellicles[C]Proceedings of SPIE 11517, Extreme Ultraviolet Lithography 2020. SPIE, 2021: 1151709.

    [42] TIMMERMANS M Y, MARIANO M, POLLENTIER I et al. Free-standing carbon nanotube films for extreme ultraviolet pellicle application[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 17, 043504(2018).

    [43] BECKERS J, VAN DE VEN T, VAN DER HORST R et al. EUV-induced plasma: a peculiar phenomenon of a modern lithographic technology[J]. Applied Sciences, 9, 2827(2019).

    [44] MALYKHIN E M, LOPAEV D V, RAKHIMOV A T et al. Plasma cleaning of multilayer mirrors in EUV lithography from amorphous carbon contaminations[J]. Moscow University Physics Bulletin, 66, 184-189(2011).

    [45] VAN DE KERKHOF M, GALUTSCHEK E, YAKUNIN A, et al. Particulate molecular contamination control in EUVinduced H2plasma in EUV lithographic scanner[C]Proceedings of SPIE 11489, Systems Contamination: Prediction, Control, Perfmance 2020. SPIE, 2020: 114890K.

    [46] VAN DE VEN T H M, REEFMAN P, DE MEIJERE C A et al. Ion energy distributions in highly transient EUV induced plasma in hydrogen[J]. Journal of Applied Physics, 123, 063301(2018).

    Xiaoran LI, Fenghua LI. Ensuring the yield of mass production in extreme ultraviolet lithography: the pellicle for mask[J]. Optical Instruments, 2024, 46(4): 81
    Download Citation