[1] HWANG J Y, MYUNG S T, SUN Y K. Recent progress in rechargeable potassium batteries[J]. Adv Funct Mater, 2018, 28(43): 1802938.
[2] RAJAGOPALAN R, TANG Y, JI X, et al. Advancements and challenges in potassium ion batteries: A comprehensive review[J]. Adv Funct Mater, 2020, 30(12): 1909486.
[3] WU X Y, LEONARD D P, JI X L. Emerging non-aqueous potassium-ion batteries: Challenges and opportunities[J]. Chem Mater, 2017, 29(12): 5031-5042.
[4] ZHANG W C, MAO J F, LI S A, et al. Phosphorus-based alloy materials for advanced potassium-ion battery anode[J]. J Am Chem Soc, 2017, 139(9): 3316-3319.
[5] SHEN Y P, LIU J, LI X Y, et al. Two-dimensional T-NiSe2 as a promising anode material for potassium-ion batteries with low average voltage, high ionic conductivity, and superior carrier mobility[J]. ACS Appl Mater Interf, 2019, 11(39): 35661-35666.
[6] YE J J, CHEN Z Z, ZHENG Z Q, et al. Rationally designed hollow carbon nanospheres decorated with S, P co-doped NiSe2 nanoparticles for high-performance potassium-ion and lithium-ion batteries[J]. J Energy Chem, 2023, 78: 401-411.
[7] ZHANG H W, XIONG D P, XU C H, et al. VSe2/MXene composite with hierarchical three-dimensional structure encapsulated in dopamine as an anode for potassium-ion batteries[J]. Electrochim Acta, 2022, 421: 140487.
[8] SHEN Q, JIANG P J, HE H C, et al. Encapsulation of MoSe2 in carbon fibers as anodes for potassium ion batteries and nonaqueous battery-supercapacitor hybrid devices[J]. Nanoscale, 2019, 11(28): 13511-13520.
[9] ZHANG X Q, XIONG Y L, ZHANG L, et al. Hierarchical interlayer-expanded MoSe2/N-C nanorods for high-rate and long-life sodium and potassium-ion batteries[J]. Inorg Chem Front, 2021, 8(5): 1271-1278.
[10] DENG J H, HUANG X L, GAO W, et al. 3D carbon framework-supported FeSe for high-performance potassium ion batteries[J]. Sustain Energy Fuels, 2020, 4(9): 4807-4813.
[11] LIU Y, YANG C, LI Y, et al. FeSe2/nitrogen-doped carbon as anode material for potassium-ion batteries[J]. Chem Eng J, 2020, 393: 124590.
[12] DONG C F, WU L Q, HE Y Y, et al. Willow-leaf-like ZnSe@N-doped carbon nanoarchitecture as a stable and high-performance anode material for sodium-ion and potassium-ion batteries[J]. Small, 2020, 16(47): e2004580.
[13] HU J Y, WANG H W, WANG S W, et al. Electrochemical deposition mechanism of sodium and potassium[J]. Energy Storage Mater, 2021, 36: 91-98.
[14] GAO L, CHEN G H, ZHANG L L, et al. Dual carbon regulated yolk-shell ZnSe microsphere anode materials towards high performance potassium ion batteries[J]. Electrochim Acta, 2022, 425: 140717.
[15] LIU Y Z, DENG Q, LI Y P, et al. CoSe@N-doped carbon nanotubes as a potassium-ion battery anode with high initial coulombic efficiency and superior capacity retention[J]. ACS Nano, 2021, 15(1): 1121-1132.
[16] TAO J M, YAN Z R, WANG D Y, et al. Rational designing of MoSe2 nanosheets in carbon framework for high-performance potassium-ion batteries[J]. Chem Eng J, 2022, 448: 137658.
[17] LIN H, LI M, YANG X, et al. Nanosheets‐assembled CuSe crystal pillar as a stable and high‐power anode for sodium‐ion and potassium‐ion batteries[J]. Adv Energy Mater, 2019, 9(20): 1900323.
[18] WANG J M, WANG B B, LIU X J, et al. Prussian blue analogs (PBA) derived porous bimetal (Mn, Fe) selenide with carbon nanotubes as anode materials for sodium and potassium ion batteries[J]. Chem Eng J, 2020, 382: 123050.
[19] VERMA R, DIDWAL P N, NGUYEN A G, et al. SnSe nanocomposite chemically-bonded with carbon-coating as an anode material for K-ion batteries with outstanding capacity and cyclability[J]. Chem Eng J, 2021, 421: 129988.
[20] NA J H, KANG Y C, PARK S K. Electrospun MOF-based ZnSe nanocrystals confined in N-doped mesoporous carbon fibers as anode materials for potassium ion batteries with long-term cycling stability[J]. Chem Eng J, 2021, 425: 131651.
[21] LIU P, HAN J, ZHU K J, et al. Heterostructure SnSe2/ZnSe@PDA nanobox for stable and highly efficient sodium‐ion storage[J]. Adv Energy Mater, 2020, 10(24): 2000741.
[22] ZHOU Y, TIAN R, DUAN H N, et al. CoSe/Co nanoparticles wrapped by in situ grown N-doped graphitic carbon nanosheets as anode material for advanced lithium ion batteries[J]. J Power Sources, 2018, 399: 223-230.
[23] FAN H S, YU H, ZHANG Y F, et al. 1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe2@C core-shell nanorods for advanced sodium ion batteries[J]. Energy Storage Mater, 2018, 10: 48-55.
[24] JO D Y, PARK S K. Constructing hollow CoSe2/SnSe2 heterostructures covered with N-doped carbon shell for high-efficiency potassium-ion storage[J]. Appl Surf Sci, 2022, 571: 151293.
[25] HSIEH Y Y, TUAN H Y. Architectural van der Waals Bi2S3/Bi2Se3 topological heterostructure as a superior potassium-ion storage material[J]. Energy Storage Mater, 2022, 51: 789-805.
[26] CHU J H, WANG W, YU Q Y, et al. Open ZnSe/C nanocages: Multi-hierarchy stress-buffer for boosting cycling stability in potassium-ion batteries[J]. J Mater Chem A, 2020, 8(2): 779-788.
[27] HUANG Q H, FAN X M, OU X, et al. Fabrication of CoSe@NC nanocubes for high performance potassium ion batteries[J]. J Colloid Interface Sci, 2021, 604: 157-167.
[28] WEADOCK N, VARONGCHAYAKUL N, WAN J Y, et al. Determination of mechanical properties of the SEI in sodium ion batteries via colloidal probe microscopy[J]. Nano Energy, 2013, 2(5): 713-719.
[29] ZHANG Z, ZHANG B, XU J, et al. Anchoring carbon-coated CoSe nanoparticles on hollow carbon nanocapsules for efficient potassium storage[J]. ACS Applied Energy Mater, 2021, 4(6): 6356-6363.
[30] MOGENSEN R, BRANDELL D, YOUNESI R. Solubility of the solid electrolyte interphase (SEI) in sodium ion batteries[J]. ACS Energy Lett, 2016, 1: 1173-1178.