[1] Jiang Y M, Xie H F, Jian D et al. The efficacy of red and yellow light on acute swelling of rosacea[J]. Journal of Diagnosis and Therapy on Dermato-Venereology, 28, 190-193(2021).
[2] Deng Y H, Zhang X Y, Duan J G. Application of yellow laser with 577 nm wavelengths in fundus diseases[J]. Chinese Journal of Ophthalmologic Medicine (Electronic Edition), 3, 300-302(2013).
[3] Thompson L A, Gardner C S. Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy[J]. Nature, 328, 229-231(1987).
[4] Duering M, Kolev V, Luther-Davies B. Generation of tuneable 589 nm radiation as a Na guide star source using an optical parametric amplifier[J]. Optics Express, 17, 437-446(2009).
[5] Zhao H, Wang H Y, Zhu S Q et al. 578.5 nm end-pumped passively Q-switched Raman yellow laser[J]. Laser & Optoelectronics Progress, 58, 0114004(2021).
[6] Duan Y M, Li Y H, Xu C W et al. Generation of 589 nm emission via frequency doubling of a composite c-cut Nd∶YVO4 self-Raman laser[J]. IEEE Photonics Technology Letters, 34, 831-834(2022).
[7] Li M M, Yang F, Zhao S L et al. All solid-state intracavity sum-frequency single-longitudinal-mode 593.5 nm yellow lasers[J]. Chinese Journal of Lasers, 47, 0301003(2020).
[8] Cai Y P, Ding J, Bai Z X et al. Recent progress in yellow laser: principles, status and perspectives[J]. Optics & Laser Technology, 152, 108113(2022).
[9] Bohdan R, Bercha A, Trzeciakowski W et al. Yellow AlGaInP/InGaP laser diodes achieved by pressure and temperature tuning[J]. Journal of Applied Physics, 104, 063105(2008).
[10] Zhang Y X, Wang R, Zhou Y S et al. Diode-pumped Dy3+, Tb3+∶LuLiF4 continuous-wave and passively Q-switched yellow lasers[J]. Optics Communications, 510, 127917(2022).
[11] Kränkel C, Marzahl D T, Moglia F et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers[J]. Laser & Photonics Reviews, 10, 548-568(2016).
[12] Wang H Y, Li J F, Jia G H et al. Optical properties of Dy3+ ions in sodium gadolinium tungstates crystal[J]. Journal of Luminescence, 126, 452-458(2007).
[13] Beauzamy L, Moine B, Gredin P. Energy transfers between dysprosium and terbium in YF3[J]. Journal of Luminescence, 127, 568-574(2007).
[14] Zhou H, Sun Z G, Wang F P et al. Preparation and spectral analysis of 4.3%Dy∶YCa4O(BO3)3 and 5%Dy,1.25%Tb∶YCa4O(BO3)3 crystals for potential use in solid state yellow lasers[J]. CrystEngComm, 13, CE00015J(2023).
[15] Chen G Z, Yin J G, Zhang L H et al. Optical properties of Dy3+ion in PbF2 laser crystal[J]. Laser Physics Letters, 10, 115801(2013).
[16] Yang Y L, Zhang L H, Li S M et al. Crystal growth and 570 nm emission of Dy3+ doped CeF3 single crystal[J]. Journal of Luminescence, 215, 116707(2019).
[17] Malinowski M, Myziak P, Piramidowicz R et al. Spectroscopic and laser properties of LiNbO3∶Dy3+ crystals[J]. Acta Physica Polonica A, 90, 181-189(1996).
[18] Seo A K T, Ueda K I, Bagayev S et al. Visible laser action of Dy3+ ions in monoclinic KY(WO4)2 and KGd(WO4)2 crystals under Xe-flashlamp pumping[J]. Japanese Journal of Applied Physics, 39, L208-L211(2000).
[19] Zou J H, Li T R, Dou Y B et al. Direct generation of watt-level yellow Dy3+-doped fiber laser[J]. Photonics Research, 9, 446-451(2021).
[20] Bolognesi G, Parisi D, Calonico D et al. Yellow laser performance of Dy3+ in co-doped Dy, Tb∶LiLuF4[J]. Optics Letters, 39, 6628-6631(2014).
[21] Li C L, Yao W M, Chen J S et al. All-solid-state yellow-laser characteristics based on co-doped Dy-Tb∶YAG crystal[J]. Chinese Journal of Lasers, 46, 1101008(2019).
[22] Tran V, Soklaski R, Liang Y F et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 89, 235319(2014).
[23] Zhang R, Zhang Y X, Yu H H et al. Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared[J]. Advanced Optical Materials, 3, 1787-1792(2015).
[24] Wu J X, Mao N N, Xie L M et al. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy[J]. Angewandte Chemie-International Edition, 54, 2366-2369(2015).
[25] Zhang S, Yang J, Xu R J et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene[J]. ACS Nano, 8, 9590-9596(2014).
[26] Kong L C, Qin Z P, Xie G Q et al. Black phosphorus as broadband saturable absorber for pulsed lasers from 1 μm to 2.7 μm wavelength[J]. Laser Physics Letters, 13, 045801(2016).
[27] Liu B Z, Li S C, Wu Z Y et al. Passive Q-switched Tm∶ YAP laser based on black phosphorus saturable absorber[J]. Laser & Optoelectronics Progress, 60, 0114006(2023).
[28] Li L J, Li T X, Zhou L et al. Passively Q-switched diode-pumped Tm, Ho∶LuVO4 laser with a black phosphorus saturable absorber[J]. Chinese Physics B, 28, 094205(2019).