• NUCLEAR TECHNIQUES
  • Vol. 47, Issue 9, 090203 (2024)
Zixiong ZHANG1,2, Kaixuan LI1,2, Qianglin WEI1,2, Yibao LIU1,2,3,*, and Qintuo ZHANG1,2
Author Affiliations
  • 1(Engineering Research Center of Nuclear Technology Application, Ministry of Education (East China University of Technology), Nanchang 330013, China)
  • 2School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China
  • 3Engineering Technology Research Center of Nuclear Radiation Detection and Application, Nanchang 330013, China
  • show less
    DOI: 10.11889/j.0253-3219.2024.hjs.47.090203 Cite this Article
    Zixiong ZHANG, Kaixuan LI, Qianglin WEI, Yibao LIU, Qintuo ZHANG. Simulation study of medical isotope production using electron accelerator-driven photoneutron source[J]. NUCLEAR TECHNIQUES, 2024, 47(9): 090203 Copy Citation Text show less
    References

    [1] Pei P, Liu T, Shen W H et al. Biomaterial-mediated internal radioisotope therapy[J]. Materials Horizons, 8, 1348-1366(2021).

    [2] Lee W W, Group K S. Clinical applications of technetium-99m quantitative single-photon emission computed tomography/computed tomography[J]. Nuclear Medicine and Molecular Imaging, 53, 172-181(2019).

    [3] Manenti S, Bonardi M L, Gini L et al. Physical optimization of production by deuteron irradiation of high specific activity 177gLu suitable for radioimmunotherapy[J]. Nuclear Medicine and Biology, 41, 407-409(2014).

    [4] Necsoiu D, Morgan I L, Hupf H et al. Monte Carlo simulations and experimental studies of yttrium-90 production using a 33 MeV linac[J]. Applied Radiation and Isotopes, 57, 509-515(2002).

    [5] Anderson I S, Andreani C, Carpenter J M et al. Research opportunities with compact accelerator-driven neutron sources[J]. Physics Reports, 654, 1-58(2016).

    [6] Swami H L, Saxena A, Vala S et al. Neutronic simulation of medical radioisotope 99Mo and 177Lu production in IPR 14 MeV neutron generator facility[J]. Applied Radiation and Isotopes: Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine, 195, 110743(2023).

    [7] Ohta M, Kwon S, Sato S et al. Investigation of Mo-99 radioisotope production by d-Li neutron source[J]. Nuclear Materials and Energy, 15, 261-266(2018).

    [8] Tkac P, Chemerisov S, Gromov R et al. Side-reaction products identified for photo-nuclear production of 99Mo[J]. Journal of Radioanalytical and Nuclear Chemistry, 326, 543-553(2020).

    [9] Lai Y X, Yang Y G. A design for the high yield photoneutron source target station[J]. Materials, 15, 7674(2022).

    [10] Koning A J, Rochman D, Sublet J C et al. TENDL: complete nuclear data library for innovative nuclear science and technology[J]. Nuclear Data Sheets, 155, 1-55(2019).

    [11] Badwar S, Ghosh R, Lawriniang B M et al. Measurement of formation cross-section of 99Mo from the 98Mo(n,γ) and 100Mo(n,2n) reactions[J]. Applied Radiation and Isotopes: Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine, 129, 117-123(2017).

    [12] Dvorakova Z, Henkelmann R, Lin X et al. Production of 177Lu at the new research reactor FRM-II: irradiation yield of 176Lu, 177Lu[J]. Applied Radiation and Isotopes: Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine, 66, 147-151(2008).

    [13] Krane K S. The 89Y(n,γ) reaction: radiative cross sections and the decay of 90Y[J]. Applied Radiation and Isotopes, 163, 109191(2020).

    [14] Audi G, Bersillon O, Blachot J et al. The nubase evaluation of nuclear and decay properties[J]. Nuclear Physics A, 729, 3-128(2003).

    [15] Ahdida C, Bozzato D, Calzolari D et al. New capabilities of the FLUKA multi-purpose code[J]. Frontiers in Physics, 9, 788253(2022).

    [16] WANG Yi, GUO Zifang, WANG Lan et al. Development status and prospect for the medical isotope molybdenum-99 produced by electron accelerator[J]. Journal of Isotopes, 35, 114-127(2022).

    [17] Fonnesu N, Scaglione S, Spassovsky I P et al. On the definition of the deuterium-tritium ion beam parameters for the SORGENTINA-RF fusion neutron source[J]. The European Physical Journal Plus, 137, 1150(2022).

    [18] ZHU Yinan, LIN Zuokang, LU Linyuan et al. Design of beam shaping assembly for boron neutron capture therapy based on D-T neutron source[J]. Nuclear Techniques, 45, 010202(2022).

    [19] Zhang Z, Song M H, Huang X B. Optimization method to compensate accelerator performance drifts[J]. Physical Review Accelerators and Beams, 25, 122801(2022).

    [20] Tkac P, Rotsch D A, Stepinski D et al. Optimization of the processing of Mo disks (ANL/NE-15/46)[R/OL]. https://publications.anl.gov/anlpubs/2016/02/124543.pdf

    [21] Dash A, Pillai M R A, Knapp F F. Production of 177Lu for targeted radionuclide therapy: available options[J]. Nuclear Medicine and Molecular Imaging, 49, 85-107(2015).

    [22] LI Meili, LI Qiaoqin, DENG Yuyang et al. A modified method to eliminate 210Bi interference in the analysis of 90Sr by extractive chromatography[J]. Nuclear Techniques, 45, 050301(2022).

    Zixiong ZHANG, Kaixuan LI, Qianglin WEI, Yibao LIU, Qintuo ZHANG. Simulation study of medical isotope production using electron accelerator-driven photoneutron source[J]. NUCLEAR TECHNIQUES, 2024, 47(9): 090203
    Download Citation