• Advanced Photonics
  • Vol. 6, Issue 3, 036002 (2024)
Wenxiang Yan1,2, Zhaozhong Chen3, Xian Long1,2, Yuan Gao1,2..., Zheng Yuan1,2, Zhi-Cheng Ren1,2, Xi-Lin Wang1,2, Jianping Ding1,2,4,* and Hui-Tian Wang1,2,*|Show fewer author(s)
Author Affiliations
  • 1Nanjing University, School of Physics, National Laboratory of Solid State Microstructures, Nanjing, China
  • 2Nanjing University, Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
  • 3University of Glasgow, James Watt School of Engineering, Glasgow, United Kingdom
  • 4Nanjing University, Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing, China
  • show less
    DOI: 10.1117/1.AP.6.3.036002 Cite this Article Set citation alerts
    Wenxiang Yan, Zhaozhong Chen, Xian Long, Yuan Gao, Zheng Yuan, Zhi-Cheng Ren, Xi-Lin Wang, Jianping Ding, Hui-Tian Wang, "Iso-propagation vortices with OAM-independent size and divergence toward future faster optical communications," Adv. Photon. 6, 036002 (2024) Copy Citation Text show less
    References

    [1] L. Allen et al. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [2] J. Wang et al. Tailoring light on three-dimensional photonic chips: a platform for versatile OAM mode optical interconnects. Adv. Photonics, 5, 036004(2023).

    [3] A. Suprano et al. Orbital angular momentum based intra and interparticle entangled states generated via a quantum dot source. Adv. Photonics, 5, 046008(2023).

    [4] Q. Cao et al. Propagation of transverse photonic orbital angular momentum through few-mode fiber. Adv. Photonics, 5, 036002(2023).

    [5] E. Brasselet. Torsion pendulum driven by the angular momentum of light: Beth’s legacy continues. Adv. Photonics, 5, 034003(2023).

    [6] J. Zhang et al. Generation of time-varying orbital angular momentum beams with space-time-coding digital metasurface. Adv. Photonics, 5, 036001(2023).

    [7] X. Li, Y. Tai, Z. Nie. Digital speckle correlation method based on phase vortices. Opt. Eng., 51, 077004(2012).

    [8] Z. Lin et al. Single-shot Kramers–Kronig complex orbital angular momentum spectrum retrieval. Adv. Photonics, 5, 036006(2023).

    [9] A. Chmyrov et al. Nanoscopy with more than 100,000 ‘doughnuts’. Nat. Methods, 10, 737-740(2013).

    [10] N. Zhang et al. Multiparameter encrypted orbital angular momentum multiplexed holography based on multiramp helicoconical beams. Adv. Photonics Nexus, 2, 036013(2023).

    [11] S. Khonina et al. The phase rotor filter. J. Mod. Opt., 39, 1147-1154(1992).

    [12] J. Yan, G. Geloni. Self-seeded free-electron lasers with orbital angular momentum. Adv. Photonics Nexus, 2, 036001(2023).

    [13] Y. Zang, A. Mirando, A. Chong. Spatiotemporal optical vortices with arbitrary orbital angular momentum orientation by astigmatic mode converters. Nanophotonics, 11, 745-752(2022).

    [14] W. Yan et al. Energy-flow-reversing dynamics in vortex beams: OAM-independent propagation and enhanced resilience. Optica, 11, 531-541(2024).

    [15] A. E. Willner et al. Design challenges and guidelines for free-space optical communication links using orbital-angular-momentum multiplexing of multiple beams. J. Opt., 18, 074014(2016).

    [16] G. Xie et al. Performance metrics and design considerations for a free-space optical orbital-angular-momentum–multiplexed communication link. Optica, 2, 357-365(2015).

    [17] M. Krenn et al. Communication with spatially modulated light through turbulent air across Vienna. New J. Phys., 16, 113028(2014).

    [18] M. Krenn et al. Twisted light transmission over 143 km. Proc. Natl. Acad. Sci. U. S. A., 113, 13648-13653(2016).

    [19] J. Mendoza-Hernández et al. Perfect Laguerre–Gauss beams. Opt. Lett., 45, 5197-5200(2020).

    [20] P. Vaity, L. Rusch. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett., 40, 597-600(2015).

    [21] B. E. A. Saleh, M. C. Teich. Fundamentals of Photonics(2019).

    [22] R. L. Phillips, L. C. Andrews. Spot size and divergence for Laguerre Gaussian beams of any order. Appl. Opt., 22, 643-644(1983).

    [23] A. E. Siegman. New developments in laser resonators. Proc. SPIE, 1224, 2-14(1990).

    [24] M. Padgett. On the focussing of light, as limited by the uncertainty principle. J. Mod. Opt., 55, 3083-3089(2008).

    [25] A. Bekshaev, K. Y. Bliokh, M. Soskin. Internal flows and energy circulation in light beams. J. Opt., 13, 053001(2011).

    [26] W. Yan et al. Non-diffracting and self-accelerating Bessel beams with on-demand tailored intensity profiles along arbitrary trajectories. Opt. Lett., 46, 1494-1497(2021).

    [27] A. Forbes, M. de Oliveira, M. R. Dennis. Structured light. Nat. Photonics, 15, 253-262(2021).

    [28] A. Klug, I. Nape, A. Forbes. The orbital angular momentum of a turbulent atmosphere and its impact on propagating structured light fields. New J. Phys., 23, 093012(2021).

    [29] B. B. Yousif, E. E. Elsayed. Performance enhancement of an orbital-angular-momentum-multiplexed free-space optical link under atmospheric turbulence effects using spatial-mode multiplexing and hybrid diversity based on adaptive MIMO equalization. IEEE Access, 7, 84401-84412(2019).

    [30] B. B. Yousif, E. E. Elsayed, M. M. Alzalabani. Atmospheric turbulence mitigation using spatial mode multiplexing and modified pulse position modulation in hybrid RF/FSO orbital-angular-momentum multiplexed based on MIMO wireless communications system. Opt. Commun., 436, 197-208(2019).

    [31] C. E. Shannon. A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev., 5, 3-55(2001).

    [32] L. Hanzo et al. Quadrature Amplitude Modulation: From Basics to Adaptive Trellis-Coded, Turbo-Equalised and Space-Time Coded OFDM, CDMA and MC-CDMA Systems(2004).

    [33] S. G. Evangelides et al. Polarization multiplexing with solitons. J. Lightwave Technol., 10, 28-35(1992).

    [34] B. Mukherjee. Optical WDM Networks(2006).

    [35] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [36] N. Bozinovic et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [37] Z. Wan et al. Divergence-degenerate spatial multiplexing towards future ultrahigh capacity, low error-rate optical communications. Light Sci. Appl., 11, 144(2022).

    [38] J. Wang et al. N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes, 1-3(2014).

    [39] J. Wang et al. Orbital angular momentum and beyond in free-space optical communications. Nanophotonics, 11, 645-680(2022).

    [40] A. E. Willner et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics, 7, 66-106(2015).

    [41] N. Zhao et al. Capacity limits of spatially multiplexed free-space communication. Nat. Photonics, 9, 822-826(2015).

    [42] J. Mendoza-Hernández et al. Laguerre–Gauss beams versus Bessel beams showdown: peer comparison. Opt. Lett., 40, 3739-3742(2015).

    [43] R. A. Silverman. Special Functions and Their Applications(1972).

    [44] J. D. Schmidt. Numerical Simulation of Optical Wave Propagation: With Examples in MATLAB(2010).

    Wenxiang Yan, Zhaozhong Chen, Xian Long, Yuan Gao, Zheng Yuan, Zhi-Cheng Ren, Xi-Lin Wang, Jianping Ding, Hui-Tian Wang, "Iso-propagation vortices with OAM-independent size and divergence toward future faster optical communications," Adv. Photon. 6, 036002 (2024)
    Download Citation