• Chinese Optics Letters
  • Vol. 21, Issue 7, 071901 (2023)
Fanglun Yang1、2、3, Guowen Zhang2、3、4、*, Xiaoqi Zhang2、3, Yanli Zhang2、3, Ruifeng Wang2、3、4, and Jianqiang Zhu2、3、**
Author Affiliations
  • 1School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
  • 2Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/COL202321.071901 Cite this Article Set citation alerts
    Fanglun Yang, Guowen Zhang, Xiaoqi Zhang, Yanli Zhang, Ruifeng Wang, Jianqiang Zhu. Self-focusing of partially coherent beams based on complex screen and split-step Fourier transform methods[J]. Chinese Optics Letters, 2023, 21(7): 071901 Copy Citation Text show less
    References

    [1] V. I. Bespalov, V. I. Talanov. Filamentary structure of light beams in nonlinear liquids. JETP Lett., 3, 307(1966).

    [2] M. M. T. Loy, Y. R. Shen. Small-scale filaments in liquids and tracks of moving foci. Phys. Rev. Lett., 22, 994(1969).

    [3] A. J. Campillo, S. L. Shapiro, B. R. Suydam. Periodic breakup of optical beams due to self‐focusing. Appl. Phys. Lett., 23, 628(1973).

    [4] E. S. Bliss, D. R. Speck, J. F. Holzrichter, J. H. Erkkila, A. J. Glass. Propagation of a high‐intensity laser pulse with small‐scale intensity modulation. Appl. Phys. Lett., 25, 448(1974).

    [5] J. A. Fleck, C. Layne. Study of self-focusing damage in a high-power Nd: glass-rod amplifier. Appl. Phys. Lett., 22, 467(1973).

    [6] E. Bliss, J. Hunt, P. Renard, G. Sommargren, H. Weaver. Effects of nonlinear propagation on laser focusing properties. IEEE J. Quantum Electron., 12, 402(1976).

    [7] S.-C. Wen, D.-Y. Fan. Non-paraxial propagation of optical beams in nonlinear self-focusing media. Chin. J. Lasers, 28, 1066(2001).

    [8] Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, C. Yamanaka. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett., 53, 1057(1984).

    [9] X. Deng, X. Liang, Z. Chen, W. Yu, R. Ma. Uniform illumination of large targets using a lens array. Appl. Opt., 25, 377(1986).

    [10] S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light. J. Appl. Phys., 66, 3456(1989).

    [11] N. A. Fleurot, M. L. Andre, P. Estraillier, D. Friart, C. Gouedard, C. Rouyer, J. P. Thebault, G. Thiell, D. Veron. Output pulse and energy capabilities of the PHEBUS laser facility. Proc. SPIE, 1502, 230(1991).

    [12] H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, M. Nakatsuka, S. Nakai. Partially coherent light generated by using single and multimode optical fibers in a high‐power Nd:glass laser system. Appl. Phys. Lett., 63, 580(1993).

    [13] M. Nakatsuka, N. Miyanaga, T. Kanabe, H. Nakano, K. Tsubakimoto, S. Nakai. Partially coherent light sources for ICF experiment. Proc. SPIE, 1870, 151(1993).

    [14] S. I. Fedotov, L. P. Feoktistov, M. V. Osipov, A. N. Starodub. Lasers for ICF with a controllable function of mutual coherence of radiation. J. Russ. Laser Res., 25, 79(2004).

    [15] Y. Gao, L. Ji, X. Zhao, Y. Cui et al. High-power, low-coherence laser driver facility. Opt. Lett., 45, 6839(2020).

    [16] A. Shaykin, V. Ginzburg, I. Yakovlev, A. Kochetkov, A. Kuzmin, S. Mironov, I. Shaikin, V. Lozhkarov, A. Prokhorov, E. Khazanov. Use of KDP crystal as a Kerr nonlinear medium for compressing PW laser pulses down to 10 fs. High Power Laser Sci. Eng., 9, e54(2021).

    [17] C. Liang, Y. E. Monfared, X. Liu, B. Qi, F. Wang, O. Korotkova, Y. Cai. Optimizing illumination’s complex coherence state for overcoming Rayleigh’s resolution limit. Chin. Opt. Lett., 19, 052601(2021).

    [18] Y. Zhu, Z. Zheng, X. Ge, G. Du, S. Ruan, C. Guo, P. Yan, P. Hua, L. Xia, Q. Lü. High-power, ultra-broadband supercontinuum source based upon 1/1.5 µm dual-band pumping. Chin. Opt. Lett., 19, 041403(2021).

    [19] Z. Chen, J. Klinger, D. N. Christodoulides. Induced modulation instability of partially spatially incoherent light with varying perturbation periods. Phys. Rev. E Stat Nonlin Soft Matter Phys, 66, 066601(2002).

    [20] J. Xu, Z. Liu, K. Pan, D. Zhao. Asymmetric rotating array beams with free movement and revolution. Chin. Opt. Lett., 20, 022602(2022).

    [21] M. Soljacic, M. Segev, T. Coskun, D. N. Christodoulides, A. Vishwanath. Modulation instability of incoherent beams in noninstantaneous nonlinear media. Phys. Rev. Lett., 84, 467(2000).

    [22] F. Bashore, A. Norcross. Optical Coherence and Quantum Optics(1996).

    [23] E. Wolf. New spectral representation of random sources and of the partially coherent fields that they generate. Opt. Commun., 38, 3(1981).

    [24] E. Wolf. New theory of partial coherence in the space–frequency domain. Part I: spectra and cross spectra of steady-state sources. J. Opt. Soc. Am., 72, 343(1982).

    [25] Y. Gu, G. Gbur. Scintillation properties of pseudo-Bessel correlated beams in atmospheric turbulence. Proc. SPIE, 7924, 792404(2011).

    [26] F. Wang, H. Lv, Y. Chen, Y. Cai, O. Korotkova. Three modal decompositions of Gaussian Schell-model sources: comparative analysis. Opt. Express, 29, 29676(2021).

    [27] S. Basu, M. W. Hyde, X. Xiao, D. G. Voelz, O. Korotkova. Computational approaches for generating electromagnetic Gaussian Schell-model sources. Opt. Express, 22, 31691(2014).

    [28] D. Voelz, X. Xiao, O. Korotkova. Numerical modeling of Schell-model beams with arbitrary far-field patterns. Opt. Lett., 40, 352(2015).

    [29] F. Wang, J. Li, G. Martinez-Piedra, O. Korotkova. Propagation dynamics of partially coherent crescent-like optical beams in free space and turbulent atmosphere. Opt. Express, 25, 26055(2017).

    [30] X. Wang, J. Tang, Y. Wang, X. Liu, C. Liang, L. Zhao, B. J. Hoenders, Y. Cai, P. Ma. Complex and phase screen methods for studying arbitrary genuine Schell-model partially coherent pulses in nonlinear media. Opt. Express, 30, 24222(2022).

    [31] H. Lajunen, J. Lancis, E. Silvestre, P. Andrés. Pulse-by-pulse method to characterize partially coherent pulse propagation in instantaneous nonlinear media. Opt. Express, 18, 14979(2010).

    [32] H. Wang, X.-L. Ji, H. Zhang, X.-Q. Li, Y. Deng. Propagation formulae and characteristics of partially coherent laser beams in nonlinear media. Opt. Lett., 44, 743(2019).

    [33] H. Wang, X. Ji, Y. Deng, X. Li, H. Yu. Theory of the quasi-steady-state self-focusing of partially coherent light pulses in nonlinear media. Opt. Lett., 45, 710(2020).

    [34] L. Lu, Z. Wang, J. Yu, C. Qiao, R. Lin, Y. Cai. Self-focusing property of partially coherent beam with non-uniform correlation structure in nonlinear media. Front. Phys., 9, 728(2022).

    [35] F. Gori, M. Santarsiero. Devising genuine spatial correlation functions. Opt. Lett., 32, 3531(2007).

    [36] F. Gori, V. Ramírez-Sánchez, M. Santarsiero, T. Shirai. On genuine cross-spectral density matrices. J. Opt. A Pure Appl. Opt., 11, 085706(2009).

    [37] B. Hermansson, D. Yevick, A. T. Friberg. Optical coherence calculations with the split-step fast Fourier transform method. Appl. Opt., 25, 2645(1986).

    [38] D. Jianqin, W. Youwen, Z. Lifu, Z. Jin, W. Shuangchun. Transmission characteristics of 1-dimensional intensity modulation of femtosecond pulsed laser. Intense Laser Part. Beam, 22, 1709(2010).

    Fanglun Yang, Guowen Zhang, Xiaoqi Zhang, Yanli Zhang, Ruifeng Wang, Jianqiang Zhu. Self-focusing of partially coherent beams based on complex screen and split-step Fourier transform methods[J]. Chinese Optics Letters, 2023, 21(7): 071901
    Download Citation