• Acta Physica Sinica
  • Vol. 68, Issue 20, 207802-1 (2019)
Wei Cai1,2, You-An Xu1,*, Zhi-Yong Yang1, Li-Yao Miao1, and Zhong-Hao Zhao1
Author Affiliations
  • 1Armament Launch Theory and Technology Key Discipline Laboratory of China, Rocket Force University of Engineering, Xi’an 710025, China
  • 2Science and Technology on Electro-optic Control Laboratory, Luoyang 471000, China
  • show less
    DOI: 10.7498/aps.68.20190845 Cite this Article
    Wei Cai, You-An Xu, Zhi-Yong Yang, Li-Yao Miao, Zhong-Hao Zhao. Discussion on Verdet constant solution model of paramagnetic magneto-optical materials[J]. Acta Physica Sinica, 2019, 68(20): 207802-1 Copy Citation Text show less

    Abstract

    The Verdet constant is one of the key parameters to characterize the material magneto-optical properties. The quantum theory is usually used to study magneto-optical properties and calculate the Verdet constant of paramagnetic material. However, the traditional quantum theory only takes into account the influence of the electron transition dipole moments caused by the particle property of light, which therefore cannot formulate the Verdet constant of magneto-optical material accurately.In view of the shortcomings of the existing theory, in this paper we propose is a wave-transition model of the Verdet constant. Due to the special wave-particle duality of light, the contribution of the non-transition dipole moment to the Verdet constant, caused by the electric field of light wave, should not be ignored.According to the basic theory of magneto-optical effect, in this paper we first explore the intrinsic mechanism of the paramagnetic material’s Verdet constant at a microscopic level and analyze the deficiency of traditional quantum theory. Furthermore, the classical electronic dynamic theory and quantum theory are used to reveal the contribution of volatility and transition of the light to the electric dipole moment. The density operator and statistical algorithm are introduced to derive the polarizability tensor of the paramagnetic magneto-optical material, thus obtaining the Verdet constant expression of the paramagnetic magneto-optical material, from which the Verdet constant is formulated. Taking the paramagnetic magneto-optical material TGG for example, the splitting energy levels and wave function of Tb3+ ions in the spin-orbit coupling, crystal field and effective field are calculated by the quantum method, and finally the Verdet constants under the traditional quantum theory and the volatility transition contribution model are obtained quantitatively. The comparative analysis shows that the results calculated by the wave-transition contribution model are more consistent with the experimental data and more accurate than the results calculated through the traditional quantum theory. The idea and method put forward in this paper will provide reference for further exploring the magneto-optical effect mechanism of paramagnetic magneto-optical materials.
    $ {V_{\rm{t}}} = \frac{{4{{\text{π}}^2}{\omega ^2}\chi }}{{g{\mu _{\rm{B}}}ch}} \cdot \sum\limits_{mn} {\left[ {{C_{mn}}/({\omega ^2} - \omega _{mn}^2)} \right]}, $ (1)

    View in Article

    $ V\left({\lambda,T} \right) = - \frac{{B\lambda _0^2}}{{{\lambda ^2} - \lambda _0^2}} - \frac{{C\lambda _0^2}}{{\left({T - {T_{\rm{w}}}} \right)\left({{\lambda ^2} - \lambda _0^2} \right)}} + \frac{D}{{T - {T_{\rm{w}}}}}, $ (2)

    View in Article

    $ {{E }}= {{{E}}_0}{R_{\rm{e}}}\left\{ {{{\rm{e}}^{\rm{i}}}^{(\omega t - k \cdot z)}} \right\} = {{{E}}_0}{R_{\rm{e}}}\left\{ {{{\rm{e}}^{{\rm{i}}\omega (t - \frac{n}{c}s \cdot z)}}} \right\}, $ (3)

    View in Article

    $ EL=12E0ei(ωtnLωcz),ER=12E0ei(ωtnRωcz). $ (4)

    View in Article

    $ m{{r}}'' = - m\omega _0^2{{r}} - e{{E}} - e{{r}}' \times {{{B}}_{\rm{i}}}, $ (5)

    View in Article

    $ rL=e/mω02ω2+2ωωLEL,rR=e/mω02ω22ωωLER, $ (6)

    View in Article

    $ rL=e/mω02(ωωL)2EL,rR=e/mω02(ω+ωL)2ER. $ (7)

    View in Article

    $ {{P}}_{\rm{w}}^ \pm = - e{r_{{\rm{R,L}}}} = \frac{{{e^2}/m}}{{\omega _0^2 - {{(\omega \pm {\omega _{\rm{L}}})}^2}}}{{{E}}_{{\rm{R,L}}}}, $ (8)

    View in Article

    $ {{P}}_{\rm{t}}^ \pm =\int {\psi _m^* {\hat{\rm d}}{\psi _n}{{\rm{d}}^3}r} = \left\langle {{\psi _m}|e(x \mp {\rm{i}}y)|{\psi _n}} \right\rangle , $ (9)

    View in Article

    $ \left\langle F \right\rangle = \left\langle \varPsi \right|\hat F\left| \varPsi \right\rangle = \mathop \sum \limits_{n,m} {\rho _{nm}}{F_{mn}} = {\rm{tr}}(\hat \rho \hat F), $ (10)

    View in Article

    $ \hat H = {\hat H_0} + {\hat H_{{\rm{int}}}} + {\hat H_{{\rm{rad}}}}, $ (11)

    View in Article

    $ \frac{\partial }{{\partial t}}{\rho _{nm}} \!=\! \frac{1}{{{\rm{i}}\hbar }}{\left[ {{{\hat H}_0},\hat \rho } \right]_{nm}} \!+\! \frac{1}{{{\rm i} \hbar }}{\left[ {{{\hat H}_{{\rm{int}}}},\hat \rho } \right]_{nm}}\!+\!\frac{1}{{{\rm{i}}\hbar }}{\left[ {{{\hat H}_{{\rm{rad}}}},\hat \rho } \right]_{nm}}. $ (12)

    View in Article

    ${\left[ {{{\hat H}_0},\hat \rho } \right]_{nm}} = \left({{E_n} - {E_m}} \right){\rho _{nm}} = \hbar {\omega _{nm}}{\rho _{nm}}.$ (13)

    View in Article

    $ \frac{1}{{{\rm{i}}\hbar }}{\left[ {{{\hat H}_{{\rm{rad}}}},\hat \rho } \right]_{nm}} = - {\gamma _{nm}}({\rho _{nm}} - \rho _{nm}^{\left({{\rm{eq}}} \right)}), $ (14)

    View in Article

    $ {\rho _{nm}} = \rho _{nm}^{\left(0 \right)} + \eta \rho _{nm}^{\left(1 \right)} + {\eta ^2}\rho _{nm}^{\left(2 \right)} + \cdots . $ (15)

    View in Article

    $ {\hat H_{{\rm{int}}}} = - ({{{P}}_{{\rm{w'}}}} + {{{P}}_{\rm{t}}}) \cdot E = - {{P}} \cdot {{E}}, $ (16)

    View in Article

    $tρnm(0)=iωnmρnm(0)γnm(ρnm(0)ρnm(eq)),tρnm(1)=(iωnm+γnm)ρnm(1)+i[H^int,ρ(0)]nm.$(17)

    View in Article

    $[H^int,ρ(0)]nm=k(Pnkρkm(0)ρnk(0)Pkm)E=(ρmm(0)ρnn(0))PnmE0eiωt.$ (18)

    View in Article

    $ ρnm(1)(t)=i(ρmm(0)ρnn(0))PnmE0e(iωnm+γnm)t×te(i(ωnm+ω)+γnm)tdt=1(ρmm(0)ρnn(0))PnmE(ωnm+ω)iγnm. $ (19)

    View in Article

    $ {{{P}}_{\rm{i}}} = N{\rm{tr}}({\hat \rho ^{(1)}}\hat {{P}}) = N\mathop \sum \limits_{n,m} \rho _{nm}^{\left(1 \right)}{{{P}}_{mn}}. $ (20)

    View in Article

    $a=PiNε0E=1ε0n,m(ρmm(0)ρnn(0))PmnPnmωnm+ωiγnm. $ (21)

    View in Article

    $ αij=1ε0n,m(ρmm(0)ρnn(0))PmniPnmjωnm+ωiγnm=1ε0n,mρmm(0)PmniPnmjωnm+ωiγnm1ε0n,mρnn(0)PmniPnmjωnm+ωiγnm. $ (22)

    View in Article

    $ {\alpha _{ij}} = \mathop \sum \limits_{m,n} \frac{{{\beta _m}}}{{{\varepsilon _0}\hbar }}\frac{{(P_{mn}^iP_{nm}^j + P_{nm}^iP_{mn}^j){\omega _{nm}} + (P_{mn}^iP_{nm}^j - P_{nm}^iP_{mn}^j)(\omega - {\rm{i}}{\gamma _{mn}})}}{{\omega _{mn}^2 - {{(\omega - {\rm{i}}{\gamma _{mn}})}^2}}}. $ (23)

    View in Article

    $ {a_{ij}} = \frac{1}{{2{\rm{i}}{\varepsilon _0}\hbar }}\mathop \sum \limits_m {\beta _m}\mathop \sum \limits_n \frac{{(\omega - {\rm{i}}{\gamma _{nm}})\left[ {{{(P_{\rm{t}}^ + + P_{{\rm{w'}}}^ +)}^2} - {{(P_{\rm{t}}^ - + P_{{\rm{w'}}}^ -)}^2}} \right]}}{{{\omega _{mn}}^2 - {{(\omega - {\rm{i}}{\gamma _{nm}})}^2}}}, $ (24)

    View in Article

    $ \varepsilon = \left[ {εxxεxy0εxyεxx000εz} \right], $ (25)

    View in Article

    $ {\theta _{\rm{F}}} = \frac{{\text{π}}}{\lambda } \cdot \frac{{{\rm{i}}{\varepsilon _{xy}}}}{{\sqrt {{\varepsilon _{xx}}} }} \approx \frac{{{\text{π}}\omega }}{c} \cdot \frac{{{\rm{i}}{\varepsilon _{xy}}}}{n}. $ (26)

    View in Article

    $ Vw-t=2Nπ2ω2ε0HeLnmβm×n(Pt++Pw+)2(Pt+Pw)2ωmn2ω2,$ (27)

    View in Article

    $ \hat H = {\hat H_0} + {\hat H_{{\rm{LS}}}} + {\hat H_{\rm{C}}} + {\hat H_{\rm{i}}} + {\hat H_{\rm{S}}}, $ (28)

    View in Article

    $ {\hat H_0} = - \frac{{{h^2}}}{{2m}}{\nabla ^2} - \frac{{{z^*}{e^2}}}{{4{\text{π}}{\varepsilon _0}r}},{\hat H_{{\rm{LS}}}} = \xi {{L}} \cdot {{S}}, $ (29)

    View in Article

    $ {\hat H_{\rm{C}}} = \sum\limits_{k = 0}^\infty {\sum\limits_{q = - k}^k {{B_{k,q}}{{\rm{Y}}_{k,q}}(\theta,\varphi),} } {\hat {{H}}_{\rm{i}}} = {\mu _{\rm{B}}}{H_{\rm{i}}} \cdot ({{L}} + 2{{S}}), $ (30)

    View in Article

    $\left\| {\left\langle {{\psi _{i{\rm{1}}}}} \right|{{\hat H}_{\rm{C}}}+{{\hat H}_{{\rm{LS}}}}\left| {{\psi _{j1}}} \right\rangle - {E_{m1(n1)}}{\delta _{ij}}} \right\| = 0, $ (31)

    View in Article

    $ \left\| {\left\langle {{\psi _{i{\rm{1}}}}} \right|{{\hat H}_{\rm{i}}}\left| {{\psi _{j1}}} \right\rangle - {E_{m2(n1)}}{\delta _{ij}}} \right\| = 0. $ (32)

    View in Article

    $ {E_{m2}} = {\mu _{\rm{B}}}{{{H}}_{\rm{e}}}\left[ {\left\langle {{\psi _{i2}}} \right|({{L}} \!+ \!2{{S}})\left| {{\psi _{j2}}} \right\rangle \!+\! 2\nu \chi \left\langle {{\psi _{i2}}} \right|{{S}}\left| {{\psi _{j2}}} \right\rangle } \right], $ (33)

    View in Article

    $βm=eEm/(kBT)8eEm/(kBT)=β0eEm1/(kBT)(1μBkBT)ψi2|He×(L+2S+2νχS|ψj2.$ (34)

    View in Article

    Wei Cai, You-An Xu, Zhi-Yong Yang, Li-Yao Miao, Zhong-Hao Zhao. Discussion on Verdet constant solution model of paramagnetic magneto-optical materials[J]. Acta Physica Sinica, 2019, 68(20): 207802-1
    Download Citation